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Abstract11

This thesis focuses on developing models for loss reserving in insurance applications. In the12

first chapter, a Bayesian approach is presented in order to model heavy tail loss reserving data13

using the generalized beta distribution of the second kind (GB2) with dynamic mean functions14

and mixture model representation. The proposed GB2 distribution provides a flexible probability15

density function, which nests various distributions with light and heavy tails, to facilitate accurate16

loss reserving in insurance applications. Extending the mean functions to include the state space17

and threshold models provides a dynamic approach to allow for irregular claims behaviors and18

legislative change which may occur during the claims settlement period. The mixture of GB219

distributions is proposed as a mean of modeling the unobserved heterogeneity which arises from20

the incidence of very large claims in the loss reserving data. It is shown through both simulation21

study and forecasting that model parameters are estimated in high accuracy.22

Apart from predicting the expected loss in the future, risk margin estimation is another im-23

portant aspect of loss reserving. We propose to develop quantile regression to derive risk margin24

and evaluate capital in non-life insurance applications. By utilizing the entire range of conditional25

quantile functions, especially higher quantile levels, we detail how quantile regression is capable26

of providing an accurate estimation of risk margin. Furthermore, we provide an overview of im-27

plied capital based on the historical volatility of a general insurer’s loss portfolio using quantile28

regression. Two modeling frameworks are considered based around parametric and nonparametric29

quantile regression models which we contrast specifically in this insurance setting.30

In the parametric quantile regression context, several models including the flexible general-31

ized beta distribution family, asymmetric Laplace (AL) distribution and power Pareto distribution32

are considered which we detail how to develop under a Bayesian regression framework. The33

Bayesian posterior quantile regression models in each case are studied via Markov chain Monte34

Carlo (MCMC) sampling strategies.35

In the nonparametric quantile regression models that we contrast to the parametric Bayesian36

models we adopted AL distribution as a proxy and together with the parametric AL model, we37
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expressed the solution as a scale mixture of uniform distributions to facilitate implementation.38

The models are extended to adopt dynamic mean, variance and skewness and applied to analyse39

two real loss reserve data sets to perform inference and discuss interesting features of quantile40

regression for risk margin calculations.41

Furthermore, we consider the class of recently developed stochastic models that combine42

claims payments and incurred losses information into a coherent reserving methodology. In partic-43

ular, we develop a family of hierarchical Bayesian Paid-Incurred-Claims models. In the process we44

extend the independent log-normal model by incorporating different dependence structures using45

a Data-Augmented mixture Copula Paid-Incurred claims model.46

The utility and influence of incorporating both payment and incurred losses into estimating47

of the full predictive distribution of the outstanding loss liabilities and the resulting reserves is48

demonstrated in the following cases: (i) an independent payment (P) data model; (ii) the inde-49

pendent Payment-Incurred Claims (PIC) data model; (iii) a novel dependent lag-year telescoping50

block diagonal Gaussian Copula PIC data model incorporating conjugacy via transformation; (iv)51

a novel data-augmented mixture Archimedean copula dependent PIC data model.52

Inference in such models is developed via a class of adaptive Markov chain Monte Carlo53

(MCMC) sampling algorithms. These incorporate a data-augmentation framework utilised to effi-54

ciently evaluate the likelihood for the copula based PIC model in the loss reserving triangles.55
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CHAPTER 1

Introduction189

1.1. Loss reserving background190

Loss reserving in general insurance is a vital activity to the success of the insurer. Its basic191

purpose is to estimate the cost of all future claims arising from policies currently in force and192

policies written in the past. This uncertain cost is usually the most important figure on its financial193

statement. Before embarking on the methods and techniques for claims reserving, which make up194

the main part of the thesis, it is important to understand the data. In the following paragraphs, I195

will start with outlining the data format of the loss reserving models.196

In the area of non-life insurance reserving, there are primarily two types of data used: aggre-197

gated claims triangle data and individual data. Individual loss data refers to data on a claim level.198

Claims in non-life insurance are triggered by an accident which is an event that causes damages199

covered by an insurance contract. The year of claims occurrence is called the accident year. Typ-200

ically, claims will not be settled immediately due to various factors, such as investigations and201

administration process. The delay in years is reported as development year. For each open claim,202

case officers in insurance companies assign an estimate of future payments in respect of individual203

reported claims. This estimate is often refereed to as case reserves. Individual claims data is com-204

monly summarized into a aggregated claims triangle, grouping data into rows of accident years205

and columns of development years. The claims triangle reflects the change in amounts as claims206

mature. However, the downside is that grouping data lose information as many claims data points207

will be grouped into one data point per development period per origin period, which means that we208

will have limited information to get a real sense of the distribution. An example of claims triangle209

are reported in Figure 1.1, which are the paid out claim amounts Yij for an insurance company.210

1



2 1. INTRODUCTION

They are summarized by accident years (i) and development years (j) covering periods from 1 to211

n. Apart from the paid claims triangle, there is frequently a triangle of incurred data, which is the212

quantity obtained by adding the case reserves to the paid claims, and is often available. The second213

data format which includes these two types of triangles, payment and incurred data together, are214

illustrated in Figure 1.2. Chapter two of this thesis considers reserving models for both aggregated215

and individual data. Chapter three examines quantiles for aggregated data. Both chapters con-216

sider data involving only one run-off triangle of claim payments. Then chapter four puts forward a217

model which consider both of the payment and incurred data in two run-off triangles.218

Apart from payment and incurred data, there are some other data available for reserving pur-219

pose. Generally, the number of claims reported, the average claim size and case reserves data can220

be summarized in a claims triangle format. Case reserves data is commonly used in the Projected221

Case Estimates (PCE) model whose performance is usually better in the earlier accident years than222

payment data based models. It is due to the fact that for more mature claims, the case reserves223

data is generally more reliable as more information has been collected as claims mature. Using224

both data formats, we can project an estimate for the ultimate claims amount and therefore the225

reserves that an insurance company should held by modeling the relationship between successive226

data across accident and development years. This approach has proved successful and popular.227

The common industry practice is that for the earlier accident years, PCE model is adopted because228

of the reliable case estimates.229
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FIGURE 1.1. Run Off Triangle

FIGURE 1.2. Claims triangle for payment data and incurred data (source Merz and

Wuthrich. (2010)).

1.2. Overview of loss reserving models230

Loss reserve analysis has a long and rich history. Numerous approaches to estimate the neces-231

sary reserve provisions have been developed to give reasonable estimates. They are usually clas-232

sified as deterministic or non-stochastic and statistical or stochastic (Hossack et al., 1999; Taylor,233

2000). The contribution of this thesis is to strengthen the scientific part of the reserving analysis234
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using statistical inference. To this end, the present thesis is dedicated. In the following sections, I235

will give an overview of the traditional reserving models and the new developments in statistical236

claims reserving space.237

1.2.1. Chain ladder model. In traditional loss reserving methodologies, the chain ladder238

method is the most widely applied reserving method. Taylor (2000) provides a detailed description239

of the classical chain ladder method. It has an appealing elegance, with all the inputs and outputs240

clearly visible, and it gives a clear representation of how claims are expected to develop over time.241

For analysis involves multiple triangles, n denotes the nth triangle. The algorithmic definition of242

the chain-ladder model for triangle n ∈ {1, ...N} at time I reads as follows (Merz and Wüthrich,243

2007):244

1 . Suppose there are constants f (n)
l (l = 1, ...J − 1) so that for all i and j > I − i+ 1:245

Ŷ
(n)
i,j = Y

(n)
i,I−i+1 · f

(n)
I−i+1 · f

(n)
I−i+2... · f

(n)
j−1.

is an appropriate predictor for Y (n)
i,j .246

2 . The chain ladder factors f̂ (n)
l are estimated by:247

f̂
(n)
l =

∑I−l
i=1 Y

(n)
i,l+1

S
(n)
l

=
I−l∑
i=1

Y
(n)
i,l

S
(n)
l

Y
(n)
i,l+1

Y
(n)
i,l

where248

S
(n)
l =

I−l∑
i=1

Y
(n)
i,l .

The Chain ladder method is simple, widely used and well understood. However, it has some249

significant faults. Primarily, it does not include any calendar year effects. More fundamentally,250

it doesn’t use any risk theory and make any assumptions about the way the data have been gen-251

erated. Nowadays various extensions of the chain ladder model have been proposed. Like any252

other deterministic and mechanical methods, the chain ladder method can be reinterpreted via a253

stochastic model by the addition of error terms. Various attempts have been made to extend the254

chain ladder technique. The most popular ones are the stochastic chain ladder model by Mack255
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(1993a) which is a distribution-free method using a heuristic parameter estimation method where256

a distribution free formula for the standard error of the chain-ladder reserve estimate is derived.257

Recently, Martinez et al. (2012) extends the traditional chain-ladder framework towards the use of258

extra data sources. It introduces a micro-model of the claims generating process in order to mo-259

tivate the models used for estimation, which are applied to triangles of aggregated data. Another260

extension is the overdispersed Poisson model by England and Verrall (2002), which is a bootstrap261

of the paid chain-ladder model. It assumes observations are independently over-dispersed Poisson262

distributed and their means are modeled as the product of a row effect and a column effect. The263

Chain-ladder model has also been extended in the Bayesian context by Gisler (2006). Wĺuthrich264

et al. (2008) gives some backgrounds on this model, in which a Bayesian chain-ladder approach is265

presented assuming that the unknown model parameters follow a prior distribution.266

1.2.2. The separation method. Another type of popular reserving model is the separation267

method. It was first introduced by Verbeek. H (1972) in a reinsurance context, and it was de-268

veloped further by Taylor (1977) to be applicable to the average claim cost. The idea behind the269

separation method is to distinguish two patterns in the claims data namely, the development pattern270

for the accident year and calendar year effects, of which inflation is usually the most important.271

It differs from the chain-ladder in that while the chain-ladder assumes claim proportionality be-272

tween the development years and projects the inflation present in the past data into the future, the273

separation method incorporates it into the model underlying the reserving method. When inflation274

rate is not constant, the separation method is more applicable. Wĺuthrich et al. (2008) provides a275

comprehensive review on this method. Björkwall et al. (2010) introduces a parametric bootstrap276

framework within the separation model which enables joint resampling of claim counts and claim277

amounts.278

1.2.3. The payment per claim finalized model. The payment per claim finalized (PPCF)279

model is commonly used in claims reserving practice. Payment per claim finalized is simply280
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defined as the total claim payments for a given period divided by the number of claims finalized281

within that period. The PPCF model consists of two submodels which are designed to model282

the average payments per claim finalized and the probability that a claim finalizes in a particular283

quarter from two sources of data, namely the claim size and frequency data. The multiplication284

of the results from these two models, which are the predicted average claims size and claims285

frequency, gives us the ultimate claim cost prediction. In other words, its projection is based on286

the product of these two models in a given development period. The model details have been287

introduced by Fisher and Lange (1973) and Sawkins (1979b).288

1.2.4. Overview of statistical claims reserving models. In recent years, a statistical frame-289

work for analyzing claims reserving data has been built up, encompasses, extends and consolidates290

the actuarial methods. McCullagh and Nelder (1989) point out that most of the stochastic models291

for loss reserving can be formulated by means of a particular family of generalized linear models292

(GLMs).293

1.2.5. Generalized Linear Models. Generalised linear models was first introduced by Nelder294

and Wedderbu (1972), and form a remarkable synthesis and extension of classical linear models295

which allow generalization to the mean structure and response probability of distribution. In par-296

ticular, the mean of a distribution may depend on a linear function of predictors through a link297

function, and the response probability distribution adopts any flexible distributions. Haberman and298

Renshaw (1996) gives a comprehensive review of the application of GLMs to actuarial problems,299

including loss reserving. Verrall (2004) uses a Bayesian parametric model within the framework of300

GLMs, and also illustrates how they lead to posterior predictive distributions of quantities of inter-301

est. They compare outcomes of this approach with results on approximations for the distribution302

of the discounted loss reserve when the run-off triangle is modeled by a GLM. GLMs are flexi-303

ble enough to encompass a large class of model extensions, including flexible mean, variance and304

skewness structures. Chan et al. (2008) applied the ANOVA and threshold mean structure for loss305
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reserve to allow for a change in the development year effect. GLMs can also incorporate different306

distortional assumptions to describe different data. A wide choice of distributions including the307

generalized-t (GT)(Chan et al., 2008), Pareto (Zehnwirth, 1994), the Stable family (Paulson and308

Faris, 1985), the Pearson family (Aiuppa, 1988), the log-gamma and lognormal (Ramlau-Hansen,309

1988) and the lognormal and Burr 12 (Cummins et al., 1999), and the generalized Beta of the310

second kind (GB2) distribution (Cummins et al., 1990) have been applied in loss reserving.311

1.2.6. Quantile regression. Although the classical theory of GLMs allows the modeling of312

the mean of a distribution, it is however, fruitful to go beyond modeling merely the mean of a313

distribution. Koenker and Basse (1978) introduce the idea of nonparametric quantile regression314

to estimate the conditional quantile functions. The quantiles of the conditional distribution of315

the response variable are linked to functions of observed covariates. In this way, the conditional316

quantile functions provides a more complete view of possible relationships between covariates317

and response across quantile levels. Instead of minimizing the sum of squared residuals in the318

mean regression, quantile regression minimizes the sum of absolute errors for the special case of319

median regression, and minimizes an asymmetrically weighted sum of absolute errors for the rest320

of conditional quantile functions. Yu and Moyeed (2001) introduces a technique of estimating the321

parameters of nonparametric quantile regression by employing a likelihood function that is based322

on the asymmetric Laplace (AL) distribution. The motivation behind this idea is the inclusion of the323

absolute error term in the likelihood function of AL distribution. Hence, maximising the likelihood324

of AL distribution is equivalent to miniziming the loss function of the nonparametric quantile325

regression. Note that this AL proxy distribution is for nonparametric quantile regression with326

no distribution assumption. Yu and Moyeed (2001) implement this AL model using a Bayesian327

approach. Hence, the use of the AL distribution provides an effective way for estimating quantile328

regression models. In other words, AL distribuiton can be used as a proxy distribution to estimate329

the parameters of the nonparametric quantile regression. Quantile regression has been applied to330

a wide range of financial and economics problems. Engle and Manganelli (2004) consider the331
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quantile regression for the Value at Risk (VaR) model. Cai (2010) proposes a parametric quantile332

regression model, the power-Pareto model which provides flexible quantile functions through a333

combination of quantile functions for both power and Pareto distributions. These combinations334

enable the modelling of both the main body and tails of a distribution.335

1.2.7. Paid incurred models. Apart from the generalization of loss reserve methods to model336

different quantiles of a distribution, the models can also be applied to more general data. In par-337

ticular, we can combine two sources of available data, namely the payment triangle and incurred338

claims triangles. The traditional models which fit either paid or incurred claims data, separately,339

does not make full use of all the data available, and results in the loss of some information con-340

tained in those data. This leads us to construct models for both sources of information, paid and341

incurred claims in the form of run-off triangles, which allows us to model the dependency between342

the two run-off triangles. The application of copulas to model two sources of data, as well as their343

associated dependency has been studied recently. Nelsen (2006a) gives a comprehensive review of344

the theory of copulas and their use in finance. Tang and Valdez (2005) applies the simulated loss345

ratios to aggregate losses from different line of businesses using copulas. Jong (2012) introduces a346

Gaussian copula model to describe dependence between different line of businesses. The concept347

of copula was first introduced by Sklar (1973) to decompose a n-dimensional distribution function348

into two parts, the marginal distribution functions and the copula, which describes the dependence349

part of the distribution. There are three methods of constructing a copula, namely the inversion350

method, the Geometric method and the algebraic method. More details can be found in Nelson351

(2006). The popular copula classes in fiance are the archimedean copula families by Genest and352

MacKay (1986) and the Gaussian copula. Gaussian copula is very popular because of its tractable353

properties for computation. As a copula captures the dependence relationship in a multivariate dis-354

tribution, it allows the full specification of the multivariate distribution of random vectors in terms355

of marginal distributions and dependence structure.356



1.3. BAYESIAN INFERENCE AND MODEL SELECTION CRITERIA 9

1.3. Bayesian inference and model selection criteria357

1.3.1. Bayesian inference. Bayesian methods for claims reserving have been considered in a358

series of papers by (H Aastrup and Arjas, 1996; Haastrup and Arjas, 1996; Scollnik, 2002; De Alba,359

2002; Verrall, 2004; Verrall and England, 2005). The basic idea of Bayesian is summarized as fol-360

lows: If the random variables x denote claim figures (payment or incurred cost), the Bayes theorem361

asserts that the posterior distribution for the parameter θ conditional on data x is proportional to362

the data likelihood f(x|θ) and the prior densities f(θ), which can be expressed as,363

f(θ|x) = f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

∝ f(x|θ)f(θ).

Available information on the parameters is incorporated through the prior density for θ, which can364

be modeled to make use of available information or past experience. This is then combined with365

the likelihood function via Bayes theorem to obtain a posterior distribution for the parameters.366

The Bayesian approach constitutes a powerful alternative to nonparametric and classical fre-367

quentist methods. The asymptotic behavior of the Bayesian procedure concerns the way in which368

posterior measures concentrate their mass around a point of convergence. Various studies have369

proven the consistency and asymptotic normality of posterior distributions using Bayesian method.370

The Bayesian implementation of loss reserving models has been an area of considerable inter-371

est. First, they allow actuaries to formally incorporate expert or existing prior information. Even372

when prior information is not available, we can use non-informative or reference priors. Secondly,373

Bayesian methods can obtain the complete probability distribution for the quantities of interest,374

either the parameters, or the future values of a random variable. In claims reserving practice, quite375

often, not only the mean is of interest, but also other quantities, such as quantiles for value of376

risk measure. In this regard, the Bayesian method provides the an adequate understanding and377

information of the complete distribution.378

1.3.2. Gibbs sampling. As the posterior distribution might not have a non-standard form,379

Gibbs sampling (Smith and Roberts, 1993) is a commonly used statistical Markov chain Monte380
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Carlo (MCMC) simulation method to draw samples from the posterior conditional distributions381

of model parameters. Theoretically, the probability distribution of a parameter given all the other382

parameters and the past claims data is obtained for each parameter, and then samples are simulated383

from a Markov chain that has its stationary distribution equal to the joint probability distribution384

of the parameters and data. Gibbs sampling allows people to draw one parameter or a small block385

of parameters at a time conditional on values of the other parameters, which is usually much easier386

than drawing from the posterior for all parameters simultaneously. The idea of the Gibbs sampling387

is summarized as follows. Assume that we have two model parameters θ = {θ1, θ2}. The joint388

posterior distribution is written as f(θ1, θ2|x) and the conditional density of one parameter given389

the other two parameters are written as f(θ1| θ2,x) and f(θ2| θ1,x) respectively. The algorithm390

for the implementation is illustrated below:391

1. Begin at starting values of θ(0)1 and θ(0)2 .392

2. Draw θ
(1)
1 from the conditional distribution f(θ1| θ(0)2 ,x).393

3. Draw θ
(1)
2 from the conditional distribution f(θ2| θ(1)1 x) using the newly simulated θ(1)1 .394

4. Repeat Step 2 to 3 until R iterations have completed with the simulated values converged395

to the joint posterior density function.396

1.3.3. Metropolis Hastings. Apart from Gibs sampling, the Metropolis Hastings (MH) algo-397

rithm by Hastings (1970); Metropolis et al. (1953) has been used extensively in Bayesian inference,398

to sample from complicated high-dimensional distributions. The MH algorithm in algorithmic399

form initialized with the arbitrary value θ(0) is summarized below:400

1. Given the current value θ = θ(k) at iteration k, sample a candidate parameter θ′ from the401

candidate-generating density q(θ′ |θ). with probability α, set θ(k+1) = θ
′ , where402

α = min(1,
f(θ

′|x)q(θ|θ′
)

f(θ|x)q(θ′|θ)
) (1.1)

2. else set θ(k+1) = θ(k).403

3. Return the values θ(k+1){θ(1), θ(2)..., θ(N)}.404
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4. Repeat for k = 1, 2, ...N to result in a posterior sample.405

Chib and Greenberg (1995) provide a detailed review of the more general MH algorithm as406

well as an explanation of how and why it works. Under Chib and Greenberg (1995)’s more general407

definition, there are two applications of the MH algorithm, one for implementing acceptance-408

rejection sampling when a blanketing function is not available and the other for implementing409

the algorithm with block-at-a-time scans. In the latter situation, Gibbs sampling is a special case410

of the MH algorithm. The MH algorithm is particularly useful in the context of nonstandard411

posterior distributions because the normalizing constants for the posterior distributions need not412

be calculated (Chib and Greenberg, 1995). In some cases when the posterior distribution is not413

in a closed or standard form, the MH algorithm is applicable, as it is not limited any distribution.414

When the resulting model is too high-dimensional for MH algorithm, Metropolis-within-Gibbs415

algorithm (Metropolis et al., 1953) is appropriate. Another example of MH is the random walk416

MH. The basic idea is as follows. Firstly, we consider each variable in turn. For each variable,417

we propose updating its value by adding a N(0, σ2) increment. That proposal is then accepted or418

rejected according to the usual Metropolis ratio. This process is repeated many times, allowing all419

the variables to converge.420

1.3.4. Adaptive MCMC. Although the MH algorithm has been widely used, the tuning of421

associated parameters ,such as proposal variances σ2, can be very difficult. Adaptive MCMC al-422

gorithms is designed to deal with this problem to achieve efficient mixing at some desirable accep-423

tance rates, say around twenty to thirty percent. The algorithm samples parameters via a learning424

procedure where the transition kernel specifies the probability to move from one state to another.425

The transition kernel of the algorithm is sequentially tuned during the simulation in order to obtain426

optimal efficiency (see Gilks et al. (1998); Haario et al. (2001); Andrieu and Moulines (2006a)).427

One way to measure the efficiency of MCMC is the rate of convergence to the stationary distribu-428

tion and the speed of mixing in MCMC algorithms. If the mixing is effective, there should be no429
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homogenous Markov chains. The random walk updating rules with adaptive MCMC can improve430

the mixing efficiency. The general framework of adaptive MCMC is summarized as follows:431

1. Define a measurable function gn × θk+1 → θ for k = 1, 2, ...N , where g(θ|γ) is the tran-432

sition kernel.433

2. Initialized the adaption chain with some arbitrary but fixed values (γ0, θ0) ∈ Γ×Θ.434

3. At iteration k ≥ 1, given (γ0, θ0, ...θk−1) and γk−1 = gk−1(γ0, θ0, ...θk−1) with the con-435

vention of g0(γ, θ) = γ.436

4. Return the value of θk according to the transition probability of Pγk−1
(thetak−1, .) and437

γk = gk(γ0, θ0, ..θk).438

In Haario et al. (2005b) an adaptive Metropolis algorithm with proposal covariance adapted to439

the history of the Markov chain was developed. In Andrieu and Thoms. (2008) a tutorial discussion440

of the proof of ergodicity of adaptive MCMC under two simpler conditions known as Diminishing441

Adaptation and Bounded Convergence is presented. Diminishing Adaptation means that the total442

variation of parameter learning at the beginning can be large, but eventually will diminish. The443

condition of diminishing adaptation is fulfilled when the amount of adaptation diminishes with the444

length of the chain. Bounded Convergence implies that if we take the transition kennel from any445

pint in the learning process and look at each point, eventually there should have some bound. The446

law of large number will apply, and therefore make sense to take average as a reasonable estimate.447

A Markov chain is ergodic if there is a strictly positive probability to pass from any state to any448

other state in one step. We note that when using inhomogeneous Markov kernels it is particu-449

larly important to ensure the generated Markov chain is ergodic, with the appropriate stationary450

distribution. Two conditions ensuring ergodicity of adaptive MCMC are known as Diminishing451

Adaptation and Bounded Convergence. These two conditions are summarised by the following452

two results for generic Adaptive MCMC strategies on a parameter vector θ. As in Roberts and453

Rosenthal. (2009) we assume that each fixed MCMC kernel Qγ , in the sequence of adaptions, has454

stationary distribution P (·) which corresponds to the marginal posterior of the static parameters.455



1.3. BAYESIAN INFERENCE AND MODEL SELECTION CRITERIA 13

Define the convergence time for kernel Qγ when starting from a state in the parameter space E,456

θ ∈ E, asMϵ (θ, γ) = inf{s ≥ 1 : ∥Qs
γ (θ; ·)−P (·) ∥ ≤ ϵ. Under these assumptions, they give the457

following two conditions which are sufficient to guarantee that the sampler produces draws from458

the posterior distribution as the number of iterates tend to infinity. The two sufficient conditions459

are:460

• Diminishing Adaptation: limn→∞supθ∈E∥QΓs+1 (θ, ·) − QΓs (θ, ·) ∥ = 0 in probability.461

Note, Γs are random indices.462

• Bounded Convergence: For ϵ > 0, the sequence {Mϵ (θ,Γj)}∞j=0 is bounded in probabil-463

ity.464

The sampler converges asymptotically in two senses,465

• Asymptotic convergence: limj→∞∥Law ([θ] (j))− P (θ) ∥ = 0466

• Weak Law of Large Numbers: limj→∞
1
j

∑j
i=1 ϕ ([θ] (i)) =

∫
ϕ(θ)P (dθ) for all bounded467

ϕ : E → R.468

In general it is non-trivial to develop adaption schemes which can be verified to satisfy these469

two conditions. In this chapter we use the adaptive MCMC algorithm to learn the proposal distribu-470

tion for the static parameters in our posterior Φ. In particular we work with an Adaptive Metropolis471

algorithm utilizing a mixture proposal kernel known to satisfy these two ergodicity conditions for472

unbounded state spaces and general classes of target posterior distribution, see Roberts and Rosen-473

thal. (2009) for details.474

The software WinBUGS is exploited in this thesis. It carrys out MCMC simulation using475

Gibbs sampling, which reduces the complexity of sampling from the high-dimensional posterior476

distribution. It has both a user friendly graphical interface as well as a programming interface for477

more sophisticated modeling. It contains several useful built-in functions, including the burn-in,478

thin and autocorrelation function (ACF). The burn-in period function enables us to discard the first479

B iterations as the burn-in period to ensure that convergence has reached. In this thesis, we discard480
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the first 10,000 integrations. From the remaining (R − 10, 000) iterations, parameters are sub-481

sampled or thinned from every H th = 50 iteration to reduce the autocorrelation in the samples.482

Resulting samples will consist of M =
R− 10, 000

50
realizations with their mean taken as the483

parameter estimates. After that, the history and autocorrelation function (ACF) plots are checked484

to ensure the convergence and independence of the posterior sample.485

1.3.5. Model selection criteria. To assess the model-fit, three criteria: the R percentage, de-486

viance information criteria (DIC) and Bayes factors are adopted. The R percentage is the mean of487

predicted over actual loss less one, which is a popular measure to quantify the difference between488

actual and predicted values whereas DIC originated by (Spiegelhalter et al., 2002) is a Bayesian489

analogue of Akaike’s Information Criterion (AIC) which is commonly used in Bayesian analysis.490

DIC consists of a measure of model fit which is the posterior mean deviance, and a measure of491

model complexity which is an estimate of the effective number of parameters. It has a competitive492

advantage over the traditional AIC as it is not only limited to nested models.493

The DIC is given by494

DIC = − 4

M

M∑
m=1

I∑
i=1

I+1−i∑
j=1

ln
[
f(yij|θ(m))

]
+ 2

I∑
i=1

I+1−i∑
j=1

ln
[
f(yij|θ)

]
(1.2)

where θ(m) denotes the vector of parameter estimates in the m-th iteration of the posterior sample495

M , θ̄ denotes the posterior mean of θ(m) and f(yij|θ) represents the observed likelihood for each496

observation.497

Bayes factors (Kass and Raftery, 1995) are commonly used for pairwise comparisons between498

models in Bayesian applications. Assuming two models are regarded as equally probable a priori,499

a Bayes factor represents the ratio of the posterior probabilities of the models. The model which500

is a posteriori most probable is determined by whether the Bayes factor is less than or greater than501

one. However, for some certain complex models, it might be difficult to computer Bayes factor502

accurately. In these cases, the Bayesian information criterion (BIC) gives rough approximation to503
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the logarithm of the Bayes factor, which is easy to use and dose not require the evaluation of the504

prior distributions. (Kass and Raftery, 1995). In this thesis, we use the R percentage and DIC for505

Chapter two and three, the Bayes factor for chapter four.506

1.4. General insurance loss reserving problems507

The claims reserving problem has been studied rather extensively. Long tail business in general508

insurance is characterized by lengthy delay between the period of cover and either the emergence509

or settlement of claims. The critical problem with setting reserve for long-tail casualty classes of510

business is that the estimation of ultimate net losses and loss expenses is a complex process due511

to a number of factors. Firstly, data may takes years to develop or report, allowing claims to be512

exposed to more legislation changes or other unexpected events. Hence it is necessary to consider513

a dynamic mean function and heavy tailed data distribution. Secondly, a relatively low proportion514

of net losses would be reported claims and expenses and an even smaller percentage would be515

net losses paid. Therefore, incurred but not reported (IBNR) would constitute a relatively high516

proportion of net losses which constitutes a large degree of uncertainly for setting reserves.517

A variety of methods are employed to estimate losses for long-tail casualty classes of busi-518

nesses. These methods ordinarily involve the use of loss trend factors intended to reflect the annual519

growth in loss costs from one accident year to the next. They perform poorly on longer tailed line520

of business due to the additional assumptions needed for development factors of later development521

periods. The additional assumptions are, for instance, legislative changes and unexpected events522

during the long pay out periods. Recently, some dynamic models are developed within the GLMs523

framework which involves flexible distribution such as the ones mentioned in Section 1.1. We524

propose the use of the GB2 distribution in Chapter 2 to predict loss reserve. The GB2 family pro-525

vides flexible tail estimates, and therefore can be used to model heterogeneous loss reserve data526

without doing repetitive distribution testings. It includes both heavy-tailed and light-tailed sever-527

ity distributions which is useful to describe different loss reserve data. Furthermore, in analyzing528
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aggregate loss with long tail lines, it is very likely that practical issues arising in reality, such as529

legislative changes during the long lag period of claims exposure, will affect claim payments. Fail-530

ure to account for these factors will result in severe bias in loss reserve. We extend the mean of the531

GB2 distribution to adopt some dynamic models including the ANOVA, state space and threshold532

models. It is shown through both simulation study and forecasting that these features increase533

prediction accuracy.534

Some volatile lines of business exhibit the pattern of either a big loss or no loss. It usually535

presents when a portfolio has a small market share or portfolios, such as the homeowners insurance536

when the hurricane seasons come. Setting reserves for these kind of portfolios is not easy. The537

problem arises when the observed development figures within a given loss development triangle538

heavily fluctuate due to random fluctuations and a scarce data base. This makes it difficult to make539

a reliable forecast for the ultimate claim. In such situations, actuaries often rely on industry-wide540

development patterns rather than on the observed individual data. Moreover, setting appropriate541

risk measures for the total loss distribution of the institution, such as the Value-at-Risk and the542

Expected Shortfall risk measures, rely upon the accurate specification of a tail functional of the543

total loss distribution, which is typically a very extreme quantile level. Whilst the calculation of544

this quantile level can be performed in a number of different ways, it is the intention of this thesis545

to provide actuaries and risk managers with a mathematically rigorous framework to understand546

the behavior of these risk measures with respect to measurable factors that directly drive the key547

loss processes. In Chapter 3, We describe how quantize regression and variance structures can548

be used to solve this problem. By utilizing the entire range of conditional quantile functions,549

especially higher quantile levels, we detail how quantile regression is capable of providing an550

accurate estimation of risk margin. An overview of implied capital based on the historical volatility551

of a general insurers loss portfolio is presented using the best quantile regression model.552
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Traditionally, actuaries that adopt a stochastic framework would evaluate claims liability using553

a central estimate which is typically defined as the expected value over the entire range of out-554

comes. However with the inherent uncertainty that may arise from such an estimator which is not555

statistically robust and therefore sensitive to outlier claims, claims liability measures often differ556

from their central estimates. In practice, the approach adopted is typically to then set an insurance557

provision so that, to a specified probability, the provision will eventually be sufficient to cover the558

run-off claims. Risk margin is defined as the amount required to ensure the value of the technical559

provisions is increased from the discounted best estimate to this probability of sufficiency or ade-560

quacy of liabilities. There are two commonly used methods for risk margin estimation: the cost of561

capital and the quantile methods.562

1.4.0.1. cost of capital method. Cost of capital approaches describe the risk margin as equiv-563

alent to the cost required to set up and maintain capital to support the risks to which a firm is564

exposed. Such methods require projecting the relevant capital required to support risks forward565

for the lifetime of the existing business, and then multiplying this by the cost to the firm of raising566

this capital, before discounting to get a present value (Brown, 2012). However, the Cost of Capital567

method fails to satisfy a number of desirable properties particularly for liabilities with very long568

maturities. For example it has no upper bound related to the Capital Requirement or the maximum569

value of liability, and it is not invariant under the choice of time unit(Waszink, 2013).570

1.4.0.2. Quantile method. The second method, which is the Quantile or percentile method,571

was first described for regulatory purpose by the Australian regulator (APR) in the prudentiaa572

standard GPS 210 - Liability Valuation for General Insurers. Quantile methods describe the risk573

margin as the difference between liabilities valued at a set percentile and at their best estimate.574

Opinions vary as to what level the percentile should be set, and it should be noted that for liabili-575

ties with highly skewed (fat-tailed) risks, even a relatively high percentile may result in the value576

including risk margin of liabilities being lower than the best estimate (Brown, 2012). It is worth577

noting that the more volatile a portfolios runoffs or those that display heavy tailed features may578
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require a higher risk margin, since the potential for large swings in reserves is greater than that579

of a more stable portfolio. Under the percentile method, insurers typically set a provision to be580

sufficient to cover the run-off claims at a 75 percent probability level. Compared to mean model,581

quantile regression model is more statistically robust and can detect the dependence on the covari-582

ates in the lower and upper tails of the response distribution. We are intended to introduce the583

notion of quantile regressions to be incorporated into reserving and capital measurement. What584

we bring to the quantile based framework in our proposed methods in Chapter 3 is the ability to585

incorporate in a rigorous statistical manner, regression factors based quantile regression framework586

with skewness function to estimate risk margin explicitly. We adopted an asymmetric Laplace (AL)587

distribution as a proxy and the model is extended to adopt dynamic mean, variance and skewness588

functions.589

However a univariate quantile regression model is incapable of addressing the cross correlation590

of related policy procedures and hence will underestimate their volatilities and subsequently their591

future claims liabilities. Considering multiple sources of data allows actuaries to best utilize the592

available information for loss reserves and improve prediction accuracy. The Munich chain ladder593

method introduced by Quarg and Mack (2004) is one of the first claims reserving approaches594

in the actuarial literature to unify outstanding loss liability prediction based on both sources of595

information. This method aims to reduce the gap between the two chain ladder predictions that596

are based on claims payments and incurred losses data, respectively. The main drawback with the597

Munich chain ladder method is that it involves several parameter estimates whose precisions are598

difficult to quantify within a stochastic model framework. Merz and Wuthrich. (2010) introduced599

a log-normal PIC chain model and used Bayesian methods to estimate the future part of the claims600

reserving triangles based on both payment and loss incurred information. Its major advantage601

is that the full predictive distribution of the outstanding loss liabilities can be quantified. One602

important limitation of the model of Merz and Wuthrich. (2010) is that it does not develop the603

dependence properties of the PIC model that will be applicable to loss reserving data observed604
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in practice. In Chapter 4, we extend the proposed Bayesian PIC chain-ladder models of Merz605

and Wuthrich. (2010) to capture additional dependence structures as it is well known that the606

dependence within payment data, within incurred loss data, and between payment and incurred607

loss data commonly exists due to the nature of the loss process.608

1.5. Objective and structure of the thesis609

The remaining thesis is structured as follows. Extensions of the GB2 model and mixture of610

GB2 model using different mean functions will be investigated in Chapters 2. Quantile function of611

the GB2 model and other parametric and non-parametric quantile regression model for risk margin612

estimation will be discussed in Chapter 3, Chapter 4 combines two sources of data and discuss613

bivariate model with copula function. Lastly, Chapter 5 will summarize this research with some614

concluding remarks and implications for future developments.615



CHAPTER 2

Loss Reserving Using Dynamic Structure and Generalized Beta Distribution616

This Chapter presents the modeling of long tail loss reserving data using the generalized beta617

distribution of the second kind (GB2) with dynamic mean functions and mixture model represen-618

tation.619

2.1. Background620

In order to ensure an insurance company’s financial security, it is necessary to estimate future621

claims liabilities. Reserving for the amount of future claims payments involves a large degree of622

uncertainty, especially for long tail class business where tail behaviors can be largely different.623

Hence it can be difficult to estimate the loss reserve precisely. Traditionally, conventional distri-624

butions such as the lognormal and gamma are used to model severity (Taylor, 2000). In making625

these distributional assumptions, researchers may underestimate the risk inherited in the long tail626

which is affected by large claim liabilities because these distributions do not possess flexible tails627

to describe the features of large claims. Failure to estimate the large claim liabilities adequately628

can cause financial instability of the company and eventually lead to insolvency. In order to im-629

prove modeling accuracy and reliability, sophisticated loss models have been derived with different630

distributional assumptions.631

A wide choice of distributions including the generalized-t (GT) (Chan et al., 2008), Pareto632

(Zehnwirth, 1994), the Stable family (Paulson and Faris, 1985), the Pearson family (Aiuppa, 1988),633

the log-gamma and lognormal (Ramlau-Hansen, 1988) and the lognormal and Burr 12 (Cummins634

et al., 1999), have been used in loss reserving. While the GT distribution is flexible and nests635

20
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several important families of distributions including the Student-t, uniform, both leptokurtic and636

platykurtic, and exponential power, it requires log-transformation for the loss data and the resulting637

log-linear model is more sensitive to low values than large values. As the residuals are negatively638

skewed when the data contain low claims, Chan et al. (2008) suggested skewed heavy-tailed distri-639

butions such as the skewed-t distribution. This chapter remedies the drawback of GT distribution640

and proposes the flexible generalized beta distribution of the second kind (GB2) to model severity641

distribution. The GB2 family provides flexible tail estimates, and therefore can be used to model642

heterogeneous loss reserve data without doing repetitive distribution testings. It includes both643

heavy-tailed and light-tailed severity distributions, such as The Gamma, Weibull, Pareto, Burr12,644

lognormal and the Pearson family, hence providing convenient functional forms to model insurance645

claims (Cummins et al., 1990, 2007).646

In traditional methodology of estimating severity distribution, loss data is summarized by acci-647

dent and development periods, thereby adopting a single aggregated loss distribution (Mack, 1991;648

Chan et al., 2008). However, the question arises as to whether estimation should be carried out on649

aggregate loss, or individual loss, where individual losses are observed but the interest is focussed650

on the sum. Estimating loss reserve using aggregated data reduces the impact of potential outliers651

(Chan et al., 2008); however, in the process of aggregating data, individual information and vari-652

ability are lost. Recently, more analyses are performed on individual claims (Taylor and McGuire,653

2004). Cummins et al. (2007) considered subgroups of claims by accident and development years,654

and he applied separate GB2 distribution with a constant mean to each cell of the runoff triangle.655

This model allows greater flexibility than fitting a single severity distribution across cells. How-656

ever, as a separate model is fitted to each cell, the model does not consider covariate effects, and657

hence the trend movement of claims across development years cannot be obtained in a statistically658

efficient manner. In order to capture the effect of individual characteristics, accident and develop-659

ment years, a single model with dynamic distributional parameters should be fitted to the entire set660

of individual data. Indeed, data of these two types, namely aggregated or individual, which possess661
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very different characteristics should be handled separately. This chapter proposes two types of loss662

reserve models applied specifically to aggregated and individual claims.663

In analyzing aggregate loss with long tail lines, it is very likely that practical issues arising in664

reality, such as legislative changes during the long lag period of claims exposure, will affect claim665

payments. Failure to account for these factors will result in severe bias in loss reserve. In order666

to cater for these irregular claims behaviors, we extend the mean of the GB2 distribution to adopt667

some dynamic models including the ANOVA, state space and threshold models. Threshold models,668

first introduced in Tong (1978), can be considered when the behavior predicted by the model669

differs in some important ways, for example, a shift in the mean and/or distributional parameters670

when a switching variable, such as the accident year exceeds certain thresholds, thus offering a671

dynamic modelling mechanism of risk factors across a threshold. They are characterised by easy672

interpretation and consequently a large number of applications to real phenomena can be found.673

Among some of these applications, Li and Lam (1995); Ling (1999) investigated the asymmetry674

and the volatility of financial markets; Montgomery et al. (1998); Koop and Potter (1999) used675

these structures to model unemployment rate. Chan et al. (2008) applied the threshold model for676

loss reserve to allow for a change in the development year effect.677

Many dynamic models can usefully be written in a state-space form. The properties of state-678

space model can be found in Hamilton (1994). Verrall (1989) proposed a state space representation679

of the chain ladder linear model, De Jong and Penzer (2004) present the ARIMA model in state680

space form, and Chan et al. (2008) used the state space form to model loss reserve data. While681

the ANOVA model enables the effects of accident years and lag years to act separately on the total682

loss, the state space model is a dynamic modelling approach which allows parameters to evolve683

in a flexible time-recursive manner, and thereby allowing interaction effect between accident and684

development years. It provides a flexible and unified framework to specific and often complicated685

circumstances (De Jong and Zehnwirth, 1983).686
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To analyse individual loss data, controlling for unobserved heterogeneity is an important issue.687

McDonald and Butler (1987) demonstrated how mixture distributions can be applied to model688

heterogeneous data. We propose the mixture presentation for GB2 distribution, which allows the689

dynamic mean and shape parameters to vary across subgroups of claims. The estimated group690

membership for each observation enables classification of claims into different risk groups. Such691

information is useful for the managers of insurance companies to derive separate strategies for692

handling different subgroups of claims with varying risk characteristics.693

For model implementation, the use of Bayesian ideas and techniques for loss reserving, dates694

back to 2000 when Verrall (2000) utilized the Bayesian approach to forecast outstanding claims695

payments in the lower runoff triangle. The benefit of using Bayesian procedure, lies in the adop-696

tion of available prior information and the provision of a complete predictive distribution for the697

required reserves (De Alba, 2002). Different Bayesian loss reserve models have been proposed698

for different types of claims data. Zhang et al. (2012) proposed a Bayesian non linear hierarchical699

model with growth curves to model the loss development process, using data from individual com-700

panies forming various cohorts of claims. This model allows pooling of information from multiple701

companies to perform cross-company analyses. Ntzoufras and Dellaportas (2002) investigated var-702

ious models for outstanding claims problems using a Bayesian approach via Markov chain Monte703

Carlo (MCMC) sampling strategy and showed that the computational flexibility of a Bayesian ap-704

proach facilitated the implementation of complex models, such as the state space and threshold705

models. We adopt the Bayesian approach and propose alternative hierarchical forms of the models706

through the scales mixtures representation of the GB2 distribution. This approach substantially707

simplifies the Gibbs sampler without a heavy computational cost.708

Although GB2 distribution provides flexible tails for modeling loss data, its usage is still very709

limited, particularly in analyzing aggregate loss under the Bayesian framework. To enable accurate710

loss reserving, objectives of this chapter are two-fold: to derive unique modeling strategies to711

analyze two types of loss data, the aggregate loss in the runoff triangle and the individual loss,712
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which possess very different features and characteristics, using the flexible GB2 distribution with713

dynamic mean functions and to implement the proposed models using Bayesian approach.714

The rest of this chapter is organized as follows: In section 2.2, we introduce the GB2 distribu-715

tion, with its properties and its relationship with other distributions. This chapter forms the paper716

published as Dong and Chan (2013). Section 2.3 describes the Bayesian approach and how it is717

incorporated in our models. We present our empirical study, with different modelling strategies to718

address the practical issues arising in aggregated and individual loss reserving data, in sections 2.4719

and 2.5. Section 2.6 provides some final remarks and the conclusion from this study.720

2.2. The Generalized Beta Distribution721

Loss data often exhibits heavy-tailed behavior, particularly for long tail business class. The722

generalized beta distribution of the second kind (GB2) has attractive features for modelling loss723

reserve data, as it nests a number of important distributions as its special cases. The GB2 distribu-724

tion has four parameters, which allows it to be expressed in various flexible densities. The density725

function is specified as follow:726

f(y; a, b, p, q) =
|a|yap−1

bapB(p, q)(1 + (y/b)a)p+q
, (1)

for y > 0 where b is a scale parameter and a, p and q are the shape parameters such that b, p and727

q >0 and a ̸= 0. The beta function B(p, q) is defined by:728

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt =
Γ(p)Γ(q)

Γ(p+ q)
,

and Γ(·) denotes the gamma function. Generally, the relative values of p and q determine the729

skewness of the distribution and negative values of a yield inverse distribution (Cummins et al.,730

1990). The moments for the GB2 distribution are expressed as follow:731

E(Y h) =
bhB(p+ h/a, q − h/a)

B(p, q)
. (2)
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In particular, the mean of the distribution is732

E(Y ) =
bB(p+ 1/a, q − 1/a)

B(p, q)
(3)

and the mean and variance of the GB2 distribution exist if and only if −p < 1/a < q and −p <733

2/a < q respectively. The density function in (1) can also be expressed as scale mixtures of734

generalized gamma (GG) distribution as follows:735

f(y|a, b, p, q) =
∫ ∞

0

fGG(y|p, λ, a)fGG(λ|q, b, a) dλ (4)

where λ is the mixing parameter and the density function for the GG distribution is736

fGG(y|α, β, δ) =
δ[(βy)δ]α

yΓ(α)
exp[−(βy)δ]

with moments737

E(Y k) =
Γ(α+ k/δ)

βkΓ(α)

Parameters of the GB2 distribution can be tuned to obtain different special cases and thereby re-738

duce the model complexity. It includes both Pearson and non-Pearson families of distributions.739

The Pearson distribution first published by Karl Pearson in 1895, is a family of continuous proba-740

bility distributions, including four types of distributions (numbered I through IV) in addition to the741

normal distribution. The relationship of GB2 distribution with other distributions is summarized in742

Figure 2.1 by the distribution tree in Figure 2.1 of Cummins et al. (1990) adopting the part under743

the GB2 distribution.744

Clearly, the GB2 distribution is more general than any other distributions at lower hierarchy745

of the distribution tree. Figure 2.1 shows that the special cases of GB2 distribution include the746

3-parameter distributions of log-t (LT), generalized gamma (GG), beta of type 2 (B2), Burr types747

3 and 12 (BR3 and BR12), the 2-parameter distributions of log-Cauchy (LC), lognormal (LN),748

Weibull (W), gamma (GA), variance ratio (F), Lomax or shifted Pareto (L), Fisk or loglogistic749

(Fisk) and the 1-parameter distributions of half normal (HN), Rayleigh (R), exponential (EXP),750

Chi-square (χ2) and half-t (Ht) distributions.751



26 2. LOSS RESERVING USING DYNAMIC STRUCTURE AND GENERALIZED BETA DISTRIBUTION

FIGURE 2.1. GB2 Distribution Tree.

Figure 2.2 graphs the probability density functions for some of these special cases whereas752

Figure 2.3 demonstrates how the density function of the GB2 distribution changes when one or753

two of the four parameters vary while the others are fixed. The density curves for all special cases754

are standardized by setting b = 1. The density curves for the GB2 distribution and its parameters755

in Figure 2.3 are highlighted in red. It is clearly shown that as q or p/q decreases, the tail of the756

distribution becomes heavier. Larger values of a produce heavily right-skewed distributions with757

thicker tails whereas more negative values of a yield density functions with sharper peaks and758

longer, fatter tails. By suitably changing the value of a, the GB2 distribution can be expressed in759

diversified forms ranging from symmetric to heavily right-skewed distributions.760
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FIGURE 2.2. Probability density function across subgroups of distributions in the

GB2 family

2.3. Bayesian methodology761

The inclusion of elaborate models, such as the state space, threshold and mixture models into the762

mean of the four-parameters’ GB2 distribution, complicates the likelihood function and its opti-763

mization considerably. The Bayesian approach converts the optimization problem in the likelihood764

approach to a sampling problem, and by making use of the hierarchical structure of the model and765

MCMC techniques, it lessens the complexity of model implementation for complicated models.766

In the case of nonstandard posterior distributions, MCMC techniques (Smith and Roberts, 1993;767

Gilks et al., 1996) with Gibbs sampling and Metropolis Hastings algorithm (Hastings, 1970; Me-768

tropolis et al., 1953) produce samples from the intractable posterior distributions of all unknown769

parameters. Moreover, the prior probability distributions in Bayesian inference provide a powerful770

mechanism for incorporating information from previous studies, and for controlling confounding.771
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FIGURE 2.3. Probability density function across shape parameters in the GB2 family

Even in the situation where there is no agreement on the prior information, we can use nonin-772

formative or reference priors. Inference under this circumstance is so called objective Bayesian773

inference (Berger, 1985).774

Furthermore, the emergence of WinBUGS, a user friendly software for Bayesian inference775

using MCMC techniques, allows non-experts to perform Bayesian analysis of complex statistical776

models. In this chapter, all models are implemented via Bayesian approach using WinBUGS777

and the codes for all models are available upon request. For each model in the empirical study778
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(sections 4 and 5), a single Markov chain is run for 40,000 iterations, discarding the initial 10,000779

iterations as the burn-in period and sampling every 30th iteration to mimic a random sample of size780

1,000 from the joint posterior distribution for posterior inference. Parameter estimates are given781

by the posterior means or medians. The autocorrelation functions and history plots are carefully782

checked to ensure that the posterior samples have converged and are independent. Computation783

time depends on the complexity of model and power of computer and it is around 4.5 hours using784

a Core 2 Duo 2GHz PC for fitting the threshold state space models (section 4.2.3) in the empirical785

study.786

2.4. Study of aggregated loss data787

Aggregated loss triangles have been widely used to estimate insurance liability. Although so-788

phisticated models have been developed to project the expected payments in the lower runoff tri-789

angle, the flexibility of the models to allow for extreme claims and legislative changes during the790

study period are often uncertain. In this study, we explore the use of the flexible GB2 distribution791

with four mean functions to allow for some extreme and irregular aggregated losses.792

2.4.1. The Data. The data we analyze is the amount of cumulative payments for all the com-793

pulsory third party (CTP) policies in Queensland (QLD) as at June 2008. CTP insurance policy794

covers risk that would be referred to as Auto Bodily Injury in the U.S. and Motor Bodily Injury in795

the U.K.. In order to remove the influence of inflation for reserving purposes, we utilize the aver-796

age weekly earning index from the Australian Bureau of Statistics (ABS) to inflate all the values797

to December 2008 dollars. Hence, the data used in this analysis represents the inflated cumulative798

payment for QLD CTP portfolio. The data are in the units of millions summarized by accident799

and development quarters covering periods from December 2002 to June 2008. It contains 276800

observations over 23 accident quarters as reported in Figure 2.4.801

Since CTP insurance policy covers accidental bodily injury or death of third parties as a result802

of road traffic accidents, the pay out period is typically long. People who are severely injured803

in a motor vehicle accident require long term medical treatment and rehabilitation, resulting in804
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FIGURE 2.4. QLD CTP cumulative payment data

substantially high losses. In certain circumstances, if the case goes to court, a legal procedure can805

be extraordinarily long, and furthermore legal costs can be very high. A substantial part of claims806

cost is from larger CTP claims which take longer to settle. Hence we propose the GB2 distribution807

with a flexible tail to model the extreme aggregate loss.808

2.4.2. Mean model. In order to capture the irregular claims behaviors, we apply the following809

four mean models: ANOVA, state space, threshold and state space threshold. For each of the810

models, we use the accident and development quarter as our covariates, and offset by the number811

of polices in force (ni) in each accident quarter.812

2.4.2.1. ANOVA model. Let Yij denote the aggregated total claims payment made in accident813

quarter i, settled in lag quarter j and ni denote the total number of polices in force in accident814
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quarter i. We apply the two factor ANOVA model (Model 1) as follows:815

Yij ∼ GB2(a, bij, p, q), (5)

bij =
E(Yij)B(p, q)

B(p+ 1/a, q − 1/a)
(6)

log(E(Yij)) = µij + ln(ni), (7)

µij = µ0 + αi + βj, (8)

where the parameters αi and βj which denote accident quarter and development quarter effects816

respectively satisfy the following constraints:817

α1 = β1 = 0. (9)

The following diffuse priors:818

µ ∼ N(0, 100), αi ∼ N(0, 100), βj ∼ N(0, 100), (10)
819

a ∼ N(0, 100), p ∼ Ga(0.001, 0.001), q ∼ Ga(0.001, 0.001) (11)

are assigned to the model parameters whereN(µ, σ2) represents the normal distribution with mean820

µ and variance σ2; Ga(r, u) represents the Gamma distribution with mean r/u and variance r/u2.821

For parameters without restricted ranges, we assign normal distributions with zero mean and large822

variance as there is no prior information on their values. For shape parameters with a positive823

range, they are assigned Gamma distributions with unit mean and large variance to reduce the824

detrimental effect of estimation risk. In general, this set of priors applies to subsequent analyses.825

2.4.2.2. State space model. The idea behind a state-space representation of a linear model is826

to capture the dynamics of an observed (n× 1) vector yt in terms of a possibly unobserved (r× 1)827

vector ξt known as the state vector for the model. The dynamics of the state vector are taken to be828

vector:829

ξt+m = Fmξt + Fm−1υt+1 + Fm−2υt+2 + ...+ F 1υt+m−1 + F 0υt+m (12)

for m = 1, 2, ...,
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where F denotes an (r×r) matrix and the (r×1) vector υt is taken to be i.i.d. random vector with830

zero mean, Fm denotes the matrix F multiplied by itself m times. Hence the optimal m-period-831

ahead forecast is seen to be832

E(ξt+m|ξt, ξt+1...) = Fmξt. (13)

Future values of the state vector depend on (ξt, ξt−1, ...) only through the current value ξt. This833

framework avoids the need for the detailed tailoring of calculations or mode of analysis and hence834

is suitable in a wide variety of circumstances.835

In particular, the state space (SS) model has the flexibility to allow parameters to develop in an836

auto-regressive process. When the SS model is applied to describe both the accident (α) and j-th837

development quarter (βj) effects with m = 1 and r = 1 in (12), the resultant model (Model 4) is838

given by (5) to (7) and the following:839

µij = µ0 + αi + βij, (14)

αi = αi−1 + υi,

βij = βi−1,j + νi,

where the interaction between accident and development quarters is incorporated by βij giving840

different βij for different accident and development quarters and αi and βij satisfy the following841

constraints:842

α1 = β1j = 0. (15)

Diffuse priors in (38) and (39) are assigned to the model and further843

υi ∼ N(0, 100), νi ∼ N(0, 100).

2.4.2.3. Threshold model. The threshold (T) model allows the mean function to vary before844

and after a threshold variable, such as time T . The model is very useful in accounting for events,845

such as legislation changes and catastrophes in reality. CTP policies normally possess long pay846

out periods, allowing claims to be exposed to more legislation changes or other unexpected events.847
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In the aggregated loss data, there is a major legislative change: the Civil Liability Act (CLA) 2003848

during the claims accident period. Under this new Act, injuries are assigned a point value between849

1 and 100 where zero relates to an injury not severe enough to justify any award of general damages850

and one hundred is an injury of the gravest conceivable kind (www.maic.qld.gov.au).851

The main implication is that the mean of total claims payment might shift after the new Act852

took effect. Figure 2.5 plots the time series of aggregate loss across development quarters for each853

accident quarter. The time series before and after December 2005 (T=13) are marked in black and854

red lines respectively. The red lines show sharper increases than the black lines showing a lag effect855

of CLA 2003. We have tuned the model with T ranging from 12 to 14 and found T = 13 provides856

the best model fit. This can be possibly explained by the fact that the rate of finalisation of claims857

change considerably across T = 13. A further effect is that the claim frequency steadily decreases858

with increasing accident quarter. This results from the gradual elimination of lower-severity claims859

and hence the claim sizes displays rats of increase in excess of inflation.860

Furthermore, the data set displays a burst of heavy superimposed inflation, which is claims861

inflation in excess of normal economic inflation, over the period early 2006 to early 2008, and862

quite separate from the effect addressed in the preceding paragraph. The state space threshold863

model addresses this data pattern by allowing a flexible development year parameter (βij rather864

than βj). Moreover, the threshold is estimated to be T = 13 which is at the beginning of 2006. Our865

model precisely detected this feature of the data. Adopting the same mean function throughout866

all accident quarters might fail to allow for the model shift after T = 13 caused by the lag effect867

of CLA 2003. Therefore, we introduce the state space threshold model to analyse this data. The868

adaptive nature of the state space threshold model will cause it to recognise the escalation of869

claims sizes eventually. However, there are others ways of constructing the model to recognise870

them immediately, such as a adding a time related terms in the model. This model will be explored871

in the future.872
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FIGURE 2.5. QLD CTP cumulative claims payment by development quarter

The threshold model can be used in conjunction with different kinds of mean models including873

the ANOVA (Model 2) and state space (Model 5) models. The state space threshold model is874

expressed as below:875

Yij ∼ GB2(a, bij, p, q),

(a, p, q) =

 (a1, p1, q1) for i ≤ T,

(a2, p2, q2) for i > T,

µij =

 µ1ij = υ10 + α1i + β1ij for i ≤ T,

µ2ij = υ20 + α2,i−12 + β2,i−12,j for i > T,
(16)

αki = αk,i−1 + υki,

βkij = βk,i−1,j + νki
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where bij and E(Yij) are given by (6) and (7), υki ∼ N(0, σ2
υk
), νki ∼ N(0, σ2

νk
) and αk,i−1 and876

βk,i−1,j satisfy the constraints:877

α11 = β11,j = α21 = β21,j = 0.

Alternatively, simplified ANOVA threshold (Model 3) and state space threshold (Model 6) mod-878

els could be considered by setting the shape parameters of the GB2 distribution to be consistent879

across the threshold (T = 13); that is,880

a1 = a2, p1 = p2, q1 = q2, (17)

if they are similar across T for Models 2 and/or 5. Note that an alternative hierarchical form for881

Models 1 to 6 using the scales mixtures representation in (4) is882

Yij ∼ GG(p, λij, a),

λij ∼ GG(q, bij, a) (18)

where bij and E(Yij) are given by (6) and (7), µij for the ANOVA, state space and threshold state883

space models are given by (28), (32) and (33) respectively.884

2.4.3. Numerical result. We start with fitting the traditional ANOVA model with three choices885

of distributions, Gamma, GT and GB2 distributions to the data. We have also used the chain ladder886

method, which is a widely recognized method of loss reserving for benchmarking.887

The former two distributions are chosen because the Gamma distribution has been widely used888

by actuaries and the GT family does not nest within the GB2 family. Moreover models with the889

GB2 distribution and different mean functions are also attempted. Parameter estimates for Models890

1 to 6 are reported in Table 1. Note that bij in (6) varies across accident quarter i and development891

quarter j for all models. The reported b is an average of bij over all quarters for Models 1 and 4.892

For the remaining models, the two b reported in Table 2.4.3 are averaged over accident quarters893

T < 13 and T ≥ 13 respectively.894
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TABLE 2.1. Estimated GB2 Distribution Parameters

Models a b∗ p q

M1 GB2 ANOVA -8.67 19.3 0.95 21.80

M2 GB2 T (i < 13) -9.073 31.0 1.55 3.24

(i ≥ 13) -7.59 6.0 1.49 12.42

M3 GB2 T (i < 13) -9.08 31.1 1.54 2.61

(i ≥ 13) - 6.8 - -

M4 GB2 SS -8.68 17.9 1.17 39.38

M5 GB2 SS T (i < 13) -4.95 24.1 1.95 9.12

(i ≥ 13) -4.80 5.9 1.84 7.42

M6 GB2 SS T (i < 13) -4.96 24.1 1.97 9.20

(i ≥ 13) - 5.2 - -

∗ in unit of millions.

From Table 2.4.3, the estimated values of a are always negative, which indicates inverse dis-895

tributions; the estimate of p from Model 1 is close to 1, which implies the Burr type 12 error896

distribution. The GB2 distribution is the most suitable distribution for the remaining models. In897

other words, any conventional distributions within the GB2 family are less suitable and hence yield898

less accurate prediction in loss reserving.899

To evaluate these models, two criteria, model-fit and prediction accuracy, are considered. To900

assess the model-fit, two criteria: the R percentage and deviance information criteria (DIC) are901

adopted. The R percentage is the mean of predicted over actual loss less one, which is a popular902

measure to quantify the difference between actual and predicted values whereas DIC originated903

by Spiegelhalter et al. (2002) is a Bayesian analogue of Akaike’s Information Criterion (AIC)904

which is commonly used in Bayesian analysis. DIC consists of a measure of model fit which905

is the posterior mean deviance, and a measure of model complexity which is an estimate of the906
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effective number of parameters. It has a competitive advantage over the traditional AIC as it is not907

only limited to nested models. The DIC is given by908

DIC = − 4

M

M∑
m=1

23∑
i=1

24−i∑
j=1

ln
[
f(yij|θ(m))

]
+ 2

23∑
i=1

24−i∑
j=1

ln
[
f(yij|θ)

]
(19)

where θ(m) denotes the vector of parameter estimates in the m-th iteration of the posterior sample909

M = 1000, θ̄ denotes the posterior mean of θ(m) and f(yij|θ) represents the observed likelihood910

in (1) for each observation where b is given by (6) and µij in E(Yij) is given by (28), (32) and (33)911

for the three types of mean models.912

Predictive performance is assessed by comparing the predicted aggregated loss with the actual

loss in the last diagonal of the triangle (i = 1, . . . , 23 and i+j = 24). The predicted aggregated loss

ŷij = E(yij) are calculated using (7) where µij is given by (28), (32) and (33) for the three types of

mean models. To project the cumulative loss in the lower triangle, the parameter estimates β2,i−12,j

where both accident and development quarters are beyond the threshold T = 13 are unavailable

and they are estimated by β1j
β2,j−1

β1,j−1
for the threshold ANOVA model and β1,i−12,j for the threshold

state space model. Then the total of aggregate loss (as at June 2008), the observed yij and predicted

ŷij are calculated as

yo =
23∑

i=1,j=24−i

yij and yp =
23∑

i=1,j=24−i

ŷij

and the ratio defined as R =
yp
yo

− 1 is reported in Table 2.4.3 together with yp and DIC.913

Model with the smallest DIC and R percentage is preferred. R percentage measures the pre-914

diction accuracy. The GB2 state space threshold model (M6) with the lowestR percentage demon-915

strates the best predictive power as shown in Table 2.4.3. The model fit is quantified by DIC. The916

GB2 state space model (M5) provides the best model fit with the lowest DIC. It is not surprising917

that Model 0a and 0b perform less favorably according to DIC because the GT family requires918

transformation of the data and Gamma is a special case of the GB2 family. From a distribution919

perspective, the GB2 (M2) model outperforms the Gamma (M0a) and GT (M0b) models given920
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TABLE 2.2. Model selection for aggregated data

Models DIC R (%)

M0a GT ANOVA 16,142 -4.58

M0b Gamma ANOVA 8,586 -7.10

M0c Chain Ladder - -1.87

M1 GB2 T 8,521 -2.98

M2 GB2 ANOVA 8,566 -2.04

M3 GB2 SS T 8,651 -0.58

M4 GB2 T † 8,504 -2.55

M5 GB2 SS 8,093 -2.48

M6 GB2 SS T † 8,566 0.54

† represents models with different p and q values before and after T .

the same ANOVA mean function; from a mean function perspective, the threshold (M4) and state921

space models (M5) outperform the ANOVA (M2) given the same GB2 distribution.922

In Figure 2.6, we apply Model 6 to project the claims payment flight path. The predicted923

cumulative loss ŷij in the lower triangle are plotted in dotted black lines when i < T and dotted924

red lines when i ≥ T ) whereas the observed yij in the upper triangle are plotted in solid lines.925

The figure demonstrates a general upward trend at a fast rate till the 15-th development quarter, a926

slow rate thereafter, and gradually level off. It also shows a distinct pattern before and after the927

threshold T : the later pattern shows a sharper upward trend at earlier development quarter.928
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FIGURE 2.6. QLD Claims Payment Projection by Development Quarter

Figure 2.4.3 presents three triangular heat maps to visualize the ratio of fitted to actual loss929

by accident and development quarters in the upper triangle for three models. Generally speaking,930

green represents good fit; yellow color indicates overprediction whereas blue color reveals under-931

prediction. There is more green cells in the first graph than the second one, which implies that the932

GB2 ANOVA model provides better fit than the Gamma ANOVA model given the same ANOVA933

mean function; with more blue cells in the second graph, the Gamma model shows predominately934

underprediction. Comparing the first and third graphs, the GB2 state space threshold model (M6)935

with more green cells clearly demonstrates the best fit to the data, which is in conjunction with the936

results in Table 2.4.3. Some common patterns are observed in the three heat maps. For example, the937

underprediction in the first 4 to 8 development quarters of the accident quarter 11 (Jun-05) exists938

in all three graphs, and also the underprediction from the 6 to 8 development quarters of accident939

quarter 1 (Dec-02) in the first and second graphs, but became much less in the third graph. One940

possible reason is that the Civil Liability Act 2003 applied to accident dates on and after the first941

of December 2002. So the majority of accident quarter 1 is subject to a legislative regime different942

from that applying to all subsequent accident quarters. The state space threshold model represented943

by the third graph offers different parameters for each development and accident quarters, thereby944
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recognising these patterns well. Furthermore, the threshold models assume a threshold at accident945

quarter 13 (Dec-05), which coincides with a number of significant changes in claims experience946

occurred around this period. It is generally agreed by actuaries for Queensland CTP insurers and947

for the Queensland regulator that the relative incidence of lower severity claims increased, rates948

of claim finalisation changed in response, and that claim sizes were affected by very high super-949

imposed inflation between payment quarters Jun-06 to Mar-08. The threshold models, to some950

extent, recognise these changes.951
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TABLE 2.3. Simulation Results

Parameters a p q µ0 α1 β1

True values -8.667 0.946 21.800 2.009 0.315 -5.895

Estimated values -9.105 1.108 23.017 2.067 0.317 -5.892

APB 0.051 0.171 0.056 0.029 0.005 0.000

SD 1.507 0.371 4.485 0.019 0.031 0.034

2.4.4. Simulation study. In this simulation study, we evaluate the performance of the basic952

GB2 ANOVA model. The performance of other GB2 models will be similar due to the same953

distributional assumption. The GB2 ANOVA model has 48 parameters. We use the estimated954

parameter values to simulate N = 200 data sets; each contains n = 276 observations, which is the955

same as the size of the QLD CTP payment data. Table 2.4.4 reports the mean, absolute percentage956

bias (APB), and standard deviation (SD) of the parameter estimates over N = 200 replications.957

APB is expressed as the absolute value of the difference between estimated and true value as a958

proportion of the true value. The results show that the parameters involved in the mean function959

including µ, αi and βj achieve high level of accuracy whereas the shape parameters are estimated960

to a moderate level of accuracy. It is well known that shape parameters are often more difficult961

to estimate because distributions are less sensitive to some shape parameters. However, as the962

main focus of the analysis is on the projection of loss reserve based on the expected mean value of963

each cell in the loss triangle, the shape parameter estimates have minimal effect on the projection.964

In summary, the model performance is satisfactory, and therefore the parameter estimates and965

forecasts in the empirical study of aggregated data are reliable.966

2.5. Study of individual loss data967

Model for individual loss data has been increasingly adopted to analyze the effect of individual968

characteristics because it helps to identify the underlying drivers of claim cost. It provides not969

only a link between changes in the claims processes and reserving, but also an understanding970

and quantification of the drivers of a claim. Moreover, loss reserve models for individual claims971

provides individual estimates of future claim costs arising from existing claims. These individual972

predictions form the basis of reinsurance premium calculations; it is as important as total reserve973

estimation.974

2.5.1. The data. In this study, the data that we analyze refers to the workers’ compensation975

(WC) journey claims which have been re-directed to CTP insurers in QLD as at June 2008. It976

consists of 2516 individual claims. In order to predict the full claim cost, the data include only the977
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finalized claims and are inflated to December 2008. Three key variables are selected for the WC978

claims predictors. Their definitions and levels are given as follows:979

Finalization delay (Fi): The number of months taken for the claims to be finalized980

Role of claimants: The role of claimants in an accident (Levels: Driver (Dri; x1i = 1, x2i = 0),981

motercycle rider (Mcr; x1i = 0, x2i = 1), (Passenger; x1i = x2i = 0) For each claim i, exactly one982

of the xki takes a nit value and the remainder are equal to zero.983

Treatment Indicator: The length of treatment the claimant received (Levels: Short term (≤ 6 weeks;984

x3i = 1), long term (>6 weeks; x3i = 0))985

The Ninety, Ninety-five and ninety-nine percentiles of the data are 13,657, 46,424 and 325,322986

dollars respectively, showing a dramatic increase from ninety-five to ninety-nine percentiles. A987

preliminary data analysis reveals that the maximum value of the data is 85 times the mean. More-988

over, the mean, standard error, skewness and kurtosis for the data are 3839, 13955, 14.09 and989

258.38, respectively and the claims above 95 percentile account for 50.4 percent of the total claims990

cost. All these features present strong evidence that the WC data are heavily tailed and exhibit con-991

siderable heterogeneities. Modelling the tail behavior is sure to have high impact on the accuracy992

of loss reserve.993

2.5.2. The mixture model. In general insurance practice, small and large CTP claims present994

distinct risk characteristics based on managers’ claims handling experience. Consequently, CTP995

claims managers usually handle small and large claims separately. We adopt an alternative mod-996

elling approach in which a single model is applied to the whole data set with the characteristics of997

both groups. From a modelling perspective, this allows share of information, resulting in a more998

efficient model.999

To allow for such heterogeneity in the WC data, we assume there are two underlying subgroups1000

in the mixture of GB2 model. It captures group-specific characteristics arising from the low and1001

high level loss payments in the WC data. Besides, the model facilitates classification of loss1002

payment into different risk groups, thereby providing insurance companies greater insight so as to1003

distinguish claims at an earlier stage.1004

Suppose that there are two risk groups and each claim has a probability, πk ≥ 0 of coming1005

from group k, k = 1, 2 and π2 = 1− π1. We define the unobserved group-k membership indicator1006

Iki = 1 if a claim i belongs to group k and Iki = 0 otherwise and it follows Bernoulli distribution1007
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with probability πk. If a claim Yi belongs to group k,1008

Yi ∼ GB2(ak, bik, pk, qk), (20)

bik =
E(Yi)B(pk, qk)

B(pk + 1/ak, qk − 1/ak)
, (21)

log(E(Yi)) = µk + αkFi + β1kx1i + β2kx2i + β3kx3i. (22)

Then Yi is said to arise from a finite mixture model with probability density function f(y):1009

f(y) = π1 ∗ f1(y) + (1− π1) ∗ f2(y),

where fk(y) is the probability density function (1) for component k with parameters θk = (ak, pk, qk, µk, αk, β1k, β2k, β3k)
T1010

and together with the missing observation Iki, the whole vector of parameters Θ = (θ1,θ2, π1, I1)1011

where I1 = (I11, . . . , I1n), π1 is the weight. Note that Θ contains two types of parameters, the1012

model parameters such as pk and βjk and the missing group membership I1i. Both of them are1013

estimated by drawing samples from their conditional posterior distributions.1014

To derive posterior distributions for the model parameters, the following diffuse priors are assigned1015

to the above modelling parameters. The weight πk is assigned a non-informative Uniform prior1016

on the range from 0 to 1, as it represents the weights between the two components of the mixture1017

model. The shape parameters pk and qk are assigned Gamma distributions with different sets of1018

hyper-parameters, to allow for more flexible tail behavior which is described by the ratio between1019

pk and qk. The mean and variance of qk are set to be larger than that of pk as qk is more sensitive1020

and tends to take greater values from experience.1021

µk ∼ N(0, 100), αk ∼ N(0, 100), βjk ∼ N(0, 100), πk ∼ U(0, 1),
1022

ak ∼ N(0, 100), pk ∼ Ga(0.001, 0.001), qk ∼ Ga(0.01, 0.0001)

where U(a, b) denotes the uniform distribution with support a to b.1023

One issue we encountered in implementing the mixture of GB2 distribution via the Markov1024

chain Monte Carlo (MCMC) Bayesian approach is the label switching problem. It is primarily1025

caused by the likelihood of a mixture model being invariant to permutations of the labels. The per-1026

mutation can change many times across MCMC iterations making it difficult to infer component-1027

specific parameters of the model. Lee et al. (2008) solved the label switching problem by imposing1028

identifiability constraints on the parameters in a normal mixture model. We adopt the same idea1029

by constraining the intercept of the first group to be smaller than that of the second group; that is1030

µ1 < µ2. In other words, µ2 is sampled from the range of (µ1,∞). This constraint ensures the1031

vector of parameter estimates corresponds to its unique claims group in each MCMC iteration. The1032

adoption of this identifiability constraint has substantially stabilized the parameter estimates in the1033

simulation process resulting in more reliable measures of component specific effects.1034
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2.5.3. Numerical result. We start with Gamma and GB2 error distributions without mixture1035

effects. We then consider the proposed mixture model. The parameter estimates in the mean1036

function for all three models are reported in Table 2.5.3. The direction of effects in the mean1037

function across models is consistent for the four variables. Longer finalization delay and length1038

of treatment lead to higher claim cost; the costs associated with drivers are less than those of1039

passengers which in turn is less than those of motorcycle riders. Classification of loss payments1040

into the two distinct risk groups can be performed using Iik: loss payment i is assigned to risk1041

group k if Īik > 0.5. For the mixture GB2 model, the first group consists of lower claims with1042

a mean of 1621.5 and accounting for 60% of claims whereas the second group contains mainly1043

large claims with a mean of 8405.0. From checking the credible intervals for the differences in1044

parameter estimates across the two groups, we found that α and β3 are significantly different.1045

To compare these models, we evaluate the model-fit using DIC. Celeux et al. (2002) advanced1046

the DIC for mixture model as follows:1047

DIC = − 4

M

M∑
m=1

n∑
i=1

G∑
k=1

I
(m)
ki ln

[
π
(m)
k f(yi|θ(m)

k )
]
+

2
n∑

i=1

G∑
k=1

Īik ln
[
πkf(yi|θk)

]
(23)

where θ
(m)
k denotes the vector of model parameter estimates in the m-th iteration of the posterior1048

sample for group k, G is the number of groups, I(m)
ik denotes the estimate of Iik in the m-th1049

iteration, θ̄k and Īik denotes the posterior mean of θ(m)
k and I(m)

ik respectively. f(yi|θk) represents1050

the observed likelihood in group k where E(Yi) in bik is given by (22). Parameter estimates for the1051

three models and measures of model-fit including RMSE and DIC are listed in Table 2.5.3. The1052

results show thatDIC favors the GB2 model whereas root mean square errorRMSE indicates the1053

mixture GB2 model provides the best fit. The mixture GB2 model provides less satisfactory DIC1054

because all group membership indicators I1i are considered as parameters, thereby substantially1055

inflating the number of parameters for the mixture GB2 model as compared to the GB2 model1056

without mixture effects. The model fit component of DIC for the mixture GB2 model is -46,781,1057

which is in fact less than -44,143 for the GB2 model (G=1). Moreover, Figure 2.8 clearly shows1058

that the mixture GB2 model outperforms the model using a single GB2 distributions in modeling1059

the peak for the small claims and the tail for the large claims.1060

1061
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TABLE 2.4. Parameter estimates for the mean function

Models Intercept Fin. del. Role: Dri. Role: Mcr Tre: Sho. Prob.

µ α β1 β2 β3 π

Gamma 7.520 0.040 -0.404 0.587 -0.145 -

GB2 9.273 0.015 -0.162 0.198 -0.131 -

Mixture GB2 (lower) 7.342 0.004 -0.089 0.036 -0.034 0.592

Mixture GB2 (higher) 8.165 0.045 -0.357 0.309 -0.425 0.408

TABLE 2.5. Parameter estimates and model-fit measures for individual loss data

Models a b p q RMSE DIC

Gamma 6.99† 2.00 - - 16,454 47,832

GB2 -2.04 502.26 0.52 1.72 16,351 44,152

Mixture GB2 (lower) -2.67 127.97 0.56 44.22 15,634 56,367

Mixture GB2 (higher) -1.29 4,594.94 1.35 1.16 - -

In the Gamma model, a and b denote the scale and shape parameters respectively;

† the value of a should be multiplied by 10,000.
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FIGURE 2.8. Density of mixture GB2 and GB2 models.In the mixture GB2 model, the parameter estimate of q in the lower level group with a large1062

value reveals that the distribution approaches generalized gamma whereas that of the higher level1063

group (q close to 1) tends to Burr type 3. In all cases, a possesses negative values which imply1064



46 2. LOSS RESERVING USING DYNAMIC STRUCTURE AND GENERALIZED BETA DISTRIBUTION

inverse distributions. Note that the values of b are averages over all observations for the first two1065

models in Table 2.5.3. In the mixture case, the two b are further weighted by the estimates of the1066

group membership indicators Īki. Estimates of all shape parameters (a, p and q) are found to be1067

significantly different between risk groups as revealed by the credible intervals. Since most of the1068

parameter estimates are significantly different across the two groups, there is a strong evidence that1069

the two group mixture model is most suitable for the WC data. Figure 2.9 provides a graphical1070

illustration that the density curve of the mixture of GB2 distributions closely envelops the empirical1071

data histogram. The lower level group (in blue) accounts for the peak of the density whereas the1072

higher level group (in red) has a thicker tail than that of the lower level group to accommodate1073

extremely large claims. The two groups compensate the deficiency of each other in the combined1074

mixture model (in black).1075
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FIGURE 2.9. Density of mixture GB2 distribution and its components.

FIGURE 2.10. Membership of the lower level claims group.

As mixture model enables identification of claims groups using Īki, it provides insight for insur-1076

ance company to manage claims. Figure 2.10 plots the indicator estimates Ī1i for the lower level1077

claim group. The red line indicates the cut off between lower and higher level claims groups. We1078

can see that as claims cost increases, the proportion of claims classified to the lower claims group1079

decreases.1080
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2.6. Conclusions1081

In this chapter, we explore dynamic modeling for the long tail loss reserving data. The flexible1082

modelling approach presented in section 4 allows for the distributional parameters and means to1083

evolve with respect the actual circumstances of the data. We demonstrate the threshold and state1084

space mean models under the GB2 distribution tailoring to the CTP loss reserving data under the1085

influence of legislation changes. The GB2 distribution is shown to encompass many useful heavy1086

and light tail distributions, and hence provides sufficient flexibility to address the tail where a1087

substantial amount of losses are above the 95 percentile. Although Cummins et al. (2007) applied1088

GB2 distribution to the claims data, they fitted separate distributions to the claims in each cell1089

of the payout triangle to allow for the change in risk over time and across lags. The parameters1090

estimated using this approach are only based on the data in one cell, and hence resulting in less1091

reliable estimates because of the limited data size and ignorance of dependency between cells.1092

Our approach significantly improves their model by utilizing all the data in the payout triangle,1093

and at the same time allowing for any unexpected change across accident or development years.1094

The simulation study in section 2.4.4 confirms that our parameter estimates are very reliable and1095

achieve high level of accuracy.1096

The second part of this chapter (section 2.5) presents the GB2 distribution under the mixture1097

framework for the individual loss data tailoring to its heterogeneous features. The mixture frame-1098

work allows for any parameters to vary across different risk groups. In real insurance practice,1099

mixture model has major advantage over traditional models as it models unobserved heterogeneity1100

in the data and enables classification of claims into different risk groups. The resulting groups1101

provide insight for insurance companies for better claim management. On the other hand, it al-1102

lows actuaries to focus on the high risk group for accurate projection of large claims cost, which1103

has substantial impact on expected severities under reinsurance contracts and recoveries calcula-1104

tions. To facilitate the implementation of the proposed models, we present the Bayesian hierarchy1105

using WinBUGS. Moreover, we introduce the alternative hierarchical forms of the models using1106

the scales mixtures representation for the GB2 distribution to simplify the Gibbs sampler in the1107

MCMC simulation.1108

Although our proposed model is flexible enough to model claims in many real situations, there1109

are certainly ways for further improvements. In particular, we can explore the possibilities of1110

allowing the shape of the distribution to change across each risk combination by adopting more1111

flexible forms of the distributional parameters. It can be achieved by equating functions of indi-1112

vidual claim characteristics, accident and development quarters etc., not only to the mean, but also1113

to the distributional parameters. This is equivalent to building one model for each risk combina-1114

tion but has the benefit of incorporating all data. Yang et al. (2011) consider a multivariate GB21115

model to capture non-elliptical and asymmetric dependencies among claim portfolios. Extending1116
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our proposed approaches to multivariate modelling of claims will surely increase the applicability1117

of the models considerably. Although the full extent of the dynamic models is still to be evaluated,1118

our results do show promise.1119



CHAPTER 3

Risk Margin Quantile Regression Model1120

Continued from the development of mean models to quantile functions to derive risk margin1121

and to evaluate capital in non-life insurance applications via parametric and nonparametric quantile1122

regression models.1123

3.1. Background on Risk Margin Calculation1124

A core component of the work performed by general insurance actuaries involves the assess-1125

ment, analysis and evaluation of the uncertainty involved in the claim process with a view to as-1126

sessing appropriate risk margins for inclusion in insurance liabilities. An appropriate valuation of1127

insurance liabilities including risk margin is one of the most important issues for a general insurer.1128

Risk margin is the component of the value of claims liability that relates to the inherent uncertainty.1129

The significance of this task is well understood by the actuarial profession and has been de-1130

bated by both practitioners and academic actuaries alike. Much of the attention involves the non1131

prescriptive nature of risk margin requirements discussed in regulatory guidelines such as Article1132

77 and Article 101 of the Solvency II Directives. In Australia a general task force was established,1133

developing a report on risk margin evaluation methodologies presented to the Australian actuarial1134

profession at the Institute of Actuaries of Australia during the 16-th General Insurance Seminar in1135

2008. This report aimed to highlight approaches to risk margin calculations that are often consid-1136

ered. Before briefly discussing these aspects we first note the following Solvency II items which1137

relate to the Solvency Capital Requirement (SCR) and the risk margin.1138

Article 101 of the Solvency II Directive states,1139

“ The Solvency Capital Requirement (SCR) shall correspond to the Value-at-Risk (VaR) of the1140

basic own funds of an insurance or reinsurance undertaking subject to a confidence level of1141

99.5% over a one-year period. ”1142

Essentially, the basic own funds are defined as the excess of assets over liabilities, under specific1143

valuation rules. In this regard, a core challenge is the capital market-consistent value of insurance1144

liabilities, which requires a best estimate typically defined as the expected present value of future1145

cash flows under Solvency II plus a risk margin calculated using a cost-of-capital approach.1146
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Furthermore, under Article 77 of the 2009 Solvency II Directive it states that the risk margin1147

calculation is described as1148

“ The risk margin shall be such as to ensure that the value of the technical provisions is1149

equivalent to the amount insurance undertakings would be expected to require in order to take1150

over and meet the insurance obligations... âĂę it shall be calculated by determining the cost of1151

providing an amount of eligible own funds equal to the Solvency Capital Requirement necessary1152

to support the insurance obligations over the lifetime thereof... ”1153

As can be seen from such specifications, the recommendations to be adopted are not prescriptive1154

in the required model approaches. Therefore, as discussed in the white paper produced by the1155

Risk Margins Task force 1998, there have been several approaches considered which range from1156

those that involve little analysis of the underlying claim portfolio to those that involve significant1157

analysis of the uncertainty using a wide range of information and techniques, including stochastic1158

modelling. They highlighted approaches adopted in practice in the assessment of risk margins and1159

pointed to percentile or quantile methods as being most prevalent in practice, this provides a good1160

foundation for the methods we consider.1161

Traditionally, actuaries that adopt a stochastic framework would evaluate claims liability using1162

a central estimate which is typically defined as the expected value over the entire range of out-1163

comes. However with the inherent uncertainty that may arise from such an estimator which is not1164

statistically robust and therefore sensitive to outlier claims, claims liability measures often differ1165

from their central estimates. In practice, the approach adopted is typically to then set an insurance1166

provision so that, to a specified probability, the provision will eventually be sufficient to cover1167

the run-off claims. For instance, in order to satisfy the requirement of the Australian Prudential1168

Regulation Authority (APRA) to provide sufficient provision at a 75% probability level, the risk1169

margin should be modelled statistically so that it can capture the inherent uncertainty of the mean1170

estimate. When this margin is then added to the central estimate, it should provide a reasonable1171

valuation of claims liability and therefore increases the likelihood of providing sufficient provision1172

to meet the level required in GPS 320. In this regard, it is worth noting that the more volatile a1173

portfolios runoffs or those that display heavy tailed features may require a higher risk margin, since1174

the potential for large swings in reserves is greater than that of a more stable portfolio.1175

To accommodate these ideas, two common methods for risk margin estimation have been pro-1176

posed in practice. These are the cost of capital and the percentile methods. Under the cost of capital1177

method the actuary determines the risk margin by measuring the return on the capital required to1178

protect against adverse development of those unpaid claim liabilities. It is evident that application1179

of the cost of capital method requires an estimate of the initial capital to support the unpaid claim1180

liabilities and also the estimate of return on that capital. Alternatively, under the percentile or1181
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quantile method that we consider in this chapter, which is currently used in Australia the actuary1182

takes the perspective that the insurer must be able to meet its liability with some probability under1183

some assumptions on the distribution of liabilities. Risk margin is then calculated by subtracting1184

the central estimate from a predefined critical percentile value.1185

What we bring to the percentile and quantile based framework in our proposed methods is1186

the ability to incorporate in a rigorous statistical manner, regression factors that may be related1187

to both exogenous features directly related to the insurance claims run-off stochastic process as1188

well as endogenous factors that are related to for instance the current micro or macro economic1189

conditions and the regulatory environment. These will be incorporated into a statistical model1190

that allows one to explain the proportion of variation in the risk margin that is attributed to such1191

features in a principled manner, as we shall demonstrate allowing for accurate estimation and1192

prediction. We argue that since the percentile-based method involves the estimation of quantiles,1193

it is therefore somewhat natural to consider quantile regression, which is a statistical technique to1194

estimate conditional quantile functions, which can be used to estimate risk margin.1195

Just as classical linear regression methods based on minimizing sums of squared residuals en-1196

able one to estimate models for conditional mean functions, quantile regression methods offer a1197

mechanism for estimating models for the conditional median function, and the full range of other1198

conditional quantile functions. This model allows studying the effect of explanatory variables on1199

the entire conditional distribution of the response variable and not only on its center. Hence we1200

may develop factors and covariates which are explanatory of the risk margin variation directly1201

through the proposed quantile regression framework. By supplementing the estimation of con-1202

ditional mean functions with techniques for estimating an entire family of conditional quantile1203

functions, quantile regression is capable of providing a more complete statistical analysis of the1204

stochastic relationships among random variables.1205

Quantile regression has been applied to a wide range of applications in economics and finance,1206

but has not yet been developed in a claim reserving context for risk margin estimation. We will1207

demonstrate the features of quantile regression that have been popularized in finance and explain1208

how they can be adopted in important applications in insurance, such as risk margin calculations.1209

In quantitative investment, least square regression-based analysis is extensively used in analyzing1210

factor performance, assessing the relative attractiveness of different firms, and monitoring the risks1211

in their portfolios. Engle and Manganelli (2004) consider the quantile regression for the Value at1212

Risk (VaR) model. They construct a conditional autoregressive value at risk model (CAVaR), and1213

employ quantile regression for the estimation. The risk measure, VaR is defined as a quantile of1214

the loss distribution of a portfolio within a given time period and a confidence level. Accurate VaR1215

estimation can help financial institutions maintain appropriate capital levels to cover the risk from1216

the corresponding portfolio.1217
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Taylor (2006) estimate percentile-based risk margins via a parametric model based on the as-1218

sumption of a log normal distribution of liability. Other sophisticated distributions to capture1219

flexible shapes and tail behaviors are also proposed to model severity distribution on aggregated1220

claim data. These distributions include the generalized-t (McDonald and Newey, 1988), Pareto1221

(Embrechts et al., 1997), the Stable family (Paulson and Faris, 1985; Peters et al., 2011b,c), the1222

Pearson family (Aiuppa, 1988), the log-gamma and lognormal (Ramlau-Hansen, 1988), and type1223

II generalized beta (GB2) distribution (Cummins et al., 2007). While these distributions on real1224

support are flexible to model both leptokurtic and platykurtic data, they require log-transformation1225

for claims data and the resulting log-linear model may be more sensitive to low values than large1226

values (Chan et al., 2008).1227

In Peters et al. (2009) they adopt a Poisson-Tweedie family of models which incorporates fam-1228

ilies such as normal, compound poisson Gamma, positive stable and extreme stable distributions1229

into a family of models. It was shown how such a generalized regression structure could be used1230

in a claims reserving setting to model the claims process whilst incorporating covariate structures1231

from the loss reserving structure. In this instance a multiplicative structure for the mean and vari-1232

ance functions was considered and quantiles were derived from modelling the entire distribution,1233

rather than specifically targeting a model at the conditional quantile function.1234

Recently, in Dong and Chan (2013) an alternative class of flexible skew and heavy tail mod-1235

els was considered involving the GB2 distribution with positive support adopting dynamic mean1236

functions and mixture model representation to model long tail loss reserving data and showed that1237

GB2 outperforms some conventional distributions such as Gamma and generalised Gamma. The1238

GB2 distribution family is very flexible as it includes both heavy-tailed and light-tailed severity1239

distributions, such as gamma, Weibull, Pareto, Burr12, lognormal and the Pearson family, hence1240

providing convenient functional forms to model claims liability. From the perspective of quantile1241

specific regression models, recently ? proposed a power-Pareto model which allows for flexi-1242

ble quantile functions which can provide a combination of quantile functions for both power and1243

Pareto distributions. These combinations enable the modelling of both the main body and tails of1244

a distribution.1245

The difference with our current methodology is that instead of developing a statistical model to1246

capture all features of the claims run-off stochastic structure, with the incorporation of regression1247

components, we propose, in this work, to target explicitly the conditional quantile functions in a1248

regression structure. From a statistical perspective, this is a fundamentally different approach to1249

these previously mentioned reserving model approaches. However we will illustrate that we can1250

borrow from such models in developing our risk margin quantile regression framework. In fact1251

the associate parameter estimation loss functions, parameter estimator properties and the resulting1252

quantile in sample and out of sample forecasts will significantly differ to those achieved when1253
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trying to develop a model for the entire process rather than targeting the quantity of interest in this1254

case, the particular quantile level. This is clear from the perspective that only under a Gaussian1255

distributional assumption for such reserve models (on log scale) would a standard least squares1256

approach be optimal from the perspective of Gauss-Markov theory. In situations where returns are1257

heavy tailed and skewed alternative models will prove more appropriate as we will discuss.1258

Traditional approaches, both frequentist and Bayesian, to quantile regression have involved1259

parametric models based on the asymmetric Laplace (AL) distribution. Using asymmetric Laplace1260

distribution provides a mechanism for Bayesian inference of quantile regression models. Hu et al.1261

(2012) develop a fully Bayesian approach for fitting single-index models in conditional quantile1262

regression. The benefit of using a Bayesian procedure, lies in the adoption of available prior infor-1263

mation and the provision of a complete predictive distribution for the required reserves (De Alba,1264

2002). Different Bayesian loss reserve models have been proposed for different types of claims1265

data. Zhang et al. (2012) propose a Bayesian non linear hierarchical model with growth curves1266

to model the loss development process, using data from individual companies forming various1267

cohorts of claims. Ntzoufras and Dellaportas (2002) investigate various models for outstanding1268

claims problems using a Bayesian approach via Markov chain Monte Carlo (MCMC) sampling1269

strategy and show that the computational flexibility of a Bayesian approach facilitated the imple-1270

mentation of complex models.1271

3.1.1. Contributions. The contribution of this chapter is three-fold. First, we propose using1272

quantile regression for loss reserving. The proposed method, relating the provision to quantile1273

regression allows a direct modelling of risk margin, and hence provision, instead of estimating the1274

mean then applying a risk margin. It provides a richer characterization of the data, especially when1275

the data is heavy tailed, allowing us to consider the impact of a covariate on the entire distribution,1276

not merely its conditional mean. Secondly, we develop a range of parametric quantile regression1277

models in Bayesian framework, each with their own distribution features. Especially, in particular1278

we generalize the AL distribution model to incorporate a dynamic mean, variance and the shape1279

parameters to model risk margin via a user friendly Bayeisan software WinBugs, which is easy1280

for users without much Bayeisan background or specialized knowledge of Markov chain Monte1281

Carlo (MCMC) methodology. Furthermore, the estimation of shape parameter by accident year1282

gives us an analytical framework to estimate risk margin. This allows us to capture the feature that1283

the cohort of claims in different accident year may be heterogeneous, and hence applying different1284

different risk margin to different accident year gives us an explicit provision in reserving. Finally,1285

we compare the performance of parametric and nonparametric quantile regressions in the context1286

of loss reserving.1287

The rest of the chapter is organized as follows. Section 2 explains the parametric and non-1288

parametric models proposed. Section 3 presents the posterior quantile regression models in a1289
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Bayesian framework. Section 4 details the way to calculate risk measures and risk margin using1290

our models. Then we apply the methodology to two real loss reserve data sets in Section 5 and 6.1291

Section 7 concludes.1292

3.2. Quantile Regression for Claims Reserving1293

In this section, we present quantile regression models and explain their relevance to loss reserving,1294

this will be undertaken in both a non-parametric and a parametric modelling framework under the1295

Bayesian paradigm. In the process we propose a novel analytical approach to perform estimation1296

of the risk margin under various quantile regression model structures. Of particular focus in this1297

chapter is the class of models based on the Asymmetric Laplace (AL) distributional family. In the1298

special case of the AL distribution we demonstrate that risk margin estimation is achieved naturally1299

through the modelling the shape parameters of the AL distribution and hence the inference on the1300

model parameters directly informs the inference of the risk margin.1301

In developing a quantile regression framework for general insurance claims development trian-1302

gles we will assume that there is a run-off triangle containing claims development data in which Yij1303

will denote the cumulative claims with indices i ∈ {0, ..., I} and j ∈ {0, ..., J}, where i denotes1304

the accident year and j denotes the development year (cumulative claims can refer to payments,1305

claims incurred, etc). Furthermore, without loss of generality, we make the simplifying assumption1306

that the number of accident years is equal to the number of observed development years, that is,1307

I = J with N = 1
2
I(I + 1) observations. At time I the index set in the upper triangular is1308

Do = {(i, j) : i+ j ≤ I + 1} (1)

and for claims reserving at time I the index set to predict the future claims in the lower triangle is:1309

Dl = {(i, j) : i+ j > I + 1, i ≤ I, j ≤ I} . (2)

Therefore the vector of observed Yij in the upper triangle is given by Y o = {Yij : (i, j) ∈ Do}1310

and the corresponding vector of covariates is denoted by xo = {xij : (i, j) ∈ Do}. Similarly1311

Y l = {Yij : (i, j) ∈ Dl} and xl = {xij : (i, j) ∈ Dl} are the vectors of claims and covariates in1312

the lower triangle.1313

In the quantile regression structures we will aim to make inference on the quantile function of1314

the data within sample, in each cell of Y o as well as predictive out-off sample quantile function1315

estimation based on the claim cells in Y l in lower triangle. The estimation of the quantile function1316

regression has three main components:1317

• The conditional distribution and in this case conditional quantile function of the dependent1318

variables given by the claims data, given the explanatory variables.;1319
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FIGURE 3.1. Loss function

• The structural component of the regression structure based on the link functions and im-1320

posed model structures linking the regression structures with the covariates to the loca-1321

tion and scale of the conditional distribution and conditional quantile functions of the1322

response.;1323

• The actual choice of independent variables i.e. the covariates in the regression model, in1324

this case we will also consider some basis function regression structures in some of the1325

models proposed.1326

In the following sub-sections we discuss each of these components in term, starting with the1327

distributional aspects of the quantile regression models we consider.1328

3.2.1. Nonparametric Quantile Regression Models. In a non-parametric quantile regression1329

approach, we perform estimation of regression coefficients without the need to make any assump-1330

tions on the distribution of the response, or equivalently the residuals. If Yij > 0 is a set of observed1331

losses and xij = (1, xij1, . . . , xijm) is a vector of covariates that describe Yij . The quantile function1332

for the log transformed data Y ∗
ij = lnYij ∈ ℜ is1333

QY ∗(u|xij) = α0,u +
m∑
k=1

αk,u xijk (3)

where u ∈ (0, 1) is the quantile level, αu = (α0,u, . . . , αk,u) are the linear model coefficients for1334

quantile level u which are estimated by solving1335

min
α0,u,...,αm,u

∑
i,j≤I

ρu(ϵij) =
∑
i,j≤I

ϵij[u− I(ϵij < 0)] (4)

and ϵij = y∗ij −α0,u−
m∑
k=1

αk,u xijk. Then the quantile function for the original data is QY (u|xij) =1336

exp(QY ∗(u|xij)). Koenker and Hallock (2001) illustrate the loss function ρu for quantile regres-1337

sion as we represent in Figure 3.1.1338
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Koenker and Machado (1999); Yu and Moyeed (2001) show that the solution to minimization of1339

the loss function in equation (4) for estimating the parameter vector αu is equivalent to maximum1340

likelihood estimation of the parameters of the AL distribution. Hence, the parameter vector αu can1341

be estimated via an AL distribution with pdf1342

f(y∗ij|µij, σ
2
ij, p) =

p(1− p)

σij
exp

(
−
(y∗ij − µ∗

ij)

σij
[p− I(y∗ij ≤ µij)]

)
(5)

where the skew parameter 0 < p < 1 gives the quantile level u, σij > 0 is the scale parameter and1343

−∞ < µ∗
ij < ∞ is the location parameter. Since the pdf (5) contains the loss function (4), it is1344

clear that parameter estimates which maximize (5) will minimize (4).1345

In this formulation the AL distribution represents the conditional distribution of the observed1346

dependent variables (responses) given the covariates. More precisely, the location parameter µij of1347

the AL distribution links the coefficient vector αu and associated independent variable covariates1348

in the linear regression model to the location of the AL distribution. It is also worth noting that1349

under this representation it is straightforward to extend the quantile regression model to allow for1350

heteroscedasticity in the response which may vary as a function of the quantile level u under study.1351

To achieve this one can simply add a regression structure linked to the scale parameter σij in the1352

same manner as was done for the location parameter.1353

Equivalently, we assume Y ∗
ij conditionally follows an AL distribution denoted by Y ∗

ij ∼ AL(µ∗
ij, σ

2
ij, u).1354

Then1355

Y ∗
ij = µ∗

ij + ϵ∗ijσij (6)

where ϵ∗ij ∼ AL(0, 1, u), µ∗
ij = α0,u +

m∑
k=1

αk,u xijk and σ2
ij = exp(β0,u +

ν∑
k=1

βk,u sijk). Discussion1356

on the choice of link function and structure of regression terms will be undertaken in later sections.1357

In presenting the model in this fashion we already start to move towards the representation of a1358

parametric quantile regression structure.1359

3.2.2. Parametric Quantile Regression Models. Alternatively, we may adopt a parametric1360

approach to study the quantile regression structure. Two types of distributions, on real support1361

ℜ or positive support ℜ+ can be considered and we begin with distributions on ℜ. In this case,1362

we assume that Y ∗
ij ∼ F (y∗|θ) where F (y∗|θ) is the conditional cumulative distribution function1363

(cdf) and θ ∈ Θ is a vector of model parameters including all unknown coefficient parameters and1364

distributional parameters. The quantile function for the conditional distribution of Y ∗
ij given xij at1365

a quantile level u ∈ (0, 1) is given by:1366

QY ∗(u|xij) ≡ inf {y∗ : F (y∗|θ) ≥ u} . (7)

Under this formulation, the conditional quantile function in (7) can be written as1367

QY ∗(u|xij) = µ∗
ij +Qϵ∗(u)σij (8)
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where Qϵ∗(u) = F−1
z∗ (u) is the inverse cdf for the standardized variable Z∗

ij =
Y ∗
ij−µ∗

ij

σij
and again1368

one may incorporate regression structures given as follows for location and scale functions:1369

location: µ∗
ij = α0 +

m∑
k=1

αkxijk, (9)

scale: σ2
ij = exp(β0 +

ν∑
k=1

βksijk). (10)

To transform the quantile functionQY ∗(u|xij) back to the original scale of the data Yij = exp(Y ∗
ij),1370

we suggest QY (u|xij) = exp(QY ∗(u|xij)). We note that there is no unique way to transform the1371

quantile function QY ∗(u|xij) for Y ∗
ij back to Yij and the proposed transformation QY (u|xij) =1372

exp(QY ∗(u|xij)) does not equal in general to the quantile function for the log-AL distribution.1373

Remark: We observe that the difference between the non-parametric and the parametric quantile1374

regression models is that in the parametric structure we make explicit the quantile function of the1375

“residual” denoted by Qϵ(u).1376

For distributions on ℜ+, we assume that Yij ∼ F (y|θ) with mean exp(µ∗
ij) where µ∗

ij is given1377

in (9). Next we make explicit several possible parametric models one may consider in quantile1378

regressions for risk margin. Each model has different associated properties with regard to the1379

relationship of the skewness, kurtosis and heaviness of the tail that it imposes on the quantile1380

function of the response given the covariates.1381

3.2.2.1. Asymmetric Laplace Distribution. As discussed above, the AL distributional family1382

is a useful model structure which naturally fits into a quantile regression framework. As made1383

explicit above, the AL distribution is a three parameter distribution which has been shown to be1384

directly linked to the estimation of quantiles in a quantile regression framework, see further details1385

in Yu and Zhang (2005).1386

Since this realization, the AL family has been utilized in several financial risk and economet-1387

ric settings such as Guermat and Harris (2001) who use the symmetric laplace distribution with1388

GARCH volatility to model short-horizon asset returns. Chen et al. (2012) extend this to allow1389

skewness via AL distribution. Yu and Moyeed (2001) apply AL distribution for quantile regression1390

purposes, though as yet, no such developments have been made in the insurance and particularly1391

the risk margin context. Here we propose such a model for risk margin estimation.1392

If we model the residuals ϵij by an AL distribution, the quantile function for observed data Y ∗
ij1393

is given by (8) where F−1
z∗ (u) is the inverse cdf (quantile function)1394

F−1
AL(u|µ, σ

2, p) =

 µ+ σ
1−p

log(u
p
), if 0 ≤ u ≤ p,

µ− σ
p
log(1−u

1−p
), if p < u ≤ 1.

(11)
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To understand how the three location, shape and scale parameters of the AL distribution affect the1395

shape and tails of the distribution it is also useful to note the following relationship between the1396

parameters and the mean, variance, skewness S and kurtosis K of AL distribution:1397

E(Y ) = µ+
σ(1− 2p)

p(1− p)
, V ar(Y ) =

σ2(1− 2p+ 2p2)

(1− p)2p2
, (12)

S(Y ) =
2[(1− p)3 − p3]

((1− p)2 + p2)3/2
, K(Y ) =

9p4 + 6p2(1− p)2 + 9(1− p)4

(1− 2p+ 2p2)2
. (13)

Note that the shape parameter p of the AL distribution gives the magnitude and direction of skew-1398

ness. AL distribution is skewed to left when p > 0.5 and skewed to right when p < 0.5 and1399

hence it can model the left skewness of most log transformed loss data directly through this shape1400

parameter p. Moreover as the risk margin adopted in insurance industry is mostly greater than 501401

percent, AL distribution allows the calculation of quantiles rather than mean estimates fairly easily.1402

Figures 3.2(a) and 3.2(b) show a variety of pdf for AL distribution and its skewness and kurtosis1403

respectively.1404

FIGURE 3.2. (a) The pdf of asymmetric Laplace distribution
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Figure 2: (b) The skewness and kurtosis of asymmetric Laplace distribution
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3.2.2.2. Power Pareto Model. As the second choice of parametric quantile regression model1405

we consider the framework of ?. In this approach a polynomial power-Pareto (PP) quantile function1406
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model is developed. This model combines a power distribution with a Pareto distribution, which1407

enables us to model both the main body and the tails of a distribution. In considering the PP1408

model the conditional quantile function of the response (reserve in each cell) are comprised of two1409

components:1410

• component 1: a power distribution F1(y) = y
1
γ1 where y ∈ [0, 1] and γ1 > 0 with a1411

corresponding quantile function then given by Q1 (u; γ1) = uγ1 for u ∈ [0, 1]; and1412

• component 2: a Pareto distribution function F2(y) = 1 − y
− 1

γ2 where y ≥ 1 and γ2 > 01413

with a corresponding quantile function then given by Q2 (u; γ2) = (1− u)−γ2 .1414

One may use the fact that the product of the two quantile functions will remain a strictly valid1415

quantile function producing the new quantile function family known as the Polynomial-Power1416

Pareto model. The resulting structural form given by the inverse cdf of the Pareto distribution with1417

an additional polynomial power term:1418

F−1
PP (u|γ1, γ2) = uγ1(1− u)−γ2 . (14)

Hence the quantile function is again given by (8) whereQϵ∗(u) = F−1
PP (u) andQY (u) = exp(QY ∗(u)).1419

From the specification of this quantile function, one may then derive the resulting pdf of the PP1420

model for Y ∗
ij = lnYij which is given by1421

fPP (y
∗
ij|γ1, γ2) =

u1−γ1
ij (1− uij)

γ2+1

σij[γ2uij + γ1(1− uij)]

where uij is given by solving the system of equations defined for each observation by1422

y∗ij = µ∗
ij + uγ1ij (1− uij)

−γ2 σij. (15)

where again we treat the location µ∗
ij = µ∗

ij (α) in (9) and scale σij = σij (β) in (10) as functions1423

of the regression coefficients and associated covariates. We note that in this case the uij is really1424

an implicit function of the regression structure as each uij is found as the solution to the system of1425

equations in (15).1426

To complete the specification of the polynomial power Pareto model we plot the shape of the1427

density that can be obtained for a range of different power parameters for the power and pareto1428

components with a unit scale factor σ = 1. These plots in Figure 3.3 demonstrate the flexible1429

skewness, kurtosis and tail features that can be obtained from such a model by varying the param-1430

eters γ1 and γ2.1431
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FIGURE 3.3. The pdf of Power Pareto distribution
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3.2.2.3. Generalised Beta Distribution of the Second Type Family. We note that the AL and PP1432

families of quantile regression models require a log transformation of the data before the modelling1433

to ensure the data has real support ℜ that these distributions are defined upon. In performing1434

this transformation, one must analyze carefully the effect of the transformation on the ability to1435

fit such models and the resulting model interpretability must be interpreted with regard to the1436

transformation. This is particularly the case if zero counts are present in the data for some accident1437

and development years. Moreover, in the context of claims reserving, loss data often exhibits1438

heavy-tailed behavior, particularly for long tail business classes. To account for such features and1439

to remove the need to consider pre-transformation of the data one may consider the family of1440

generalized beta (GB2) distributions of the second kind.1441

The type two generalized beta distribution (GB2) has attractive features for modelling loss1442

reserve data, as it has a positive support ℜ+ and nests a number of important distributions as its1443

special cases. The GB2 distribution has four parameters, which allows it to be expressed in various1444

flexible densities. See Dong and Chan (2013) for a more detailed description of GB2 distribution1445

including its pdf and distribution family.1446

If Yij ∈ ℜ+ conditionally follows a GB2 distribution, then it can be characterized by the density1447

given by1448

fGB2(yij|a, bij, p, q) =
a
bij
(
yij
bij
)ap−1

B(p, q)[1 + (
yij
bij
)a]p+q

, for yij ≥ 0 (16)

where a, p and q are shape parameters and bij is the scale parameter.1449

In particular, bij can be linked to the mean µij of the distribution as follows:1450

bij =
µijB(p, q)

B(p+ 1/a, q − 1/a)
(17)
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where µij is log-linked to a linear function of covariates µ∗
ij in (9) according to the relationship:1451

E(Yij) = µij = exp

(
α0 +

m∑
k=1

αk xijk

)
. (18)

Then the variance is given by:1452

V ar(Yij) = µ2
ij

{
B(p, q)B(p+ 2/a, q − 2/a)

[B(p+ 1/a, q − 1/a)]2
− 1

}
. (19)

The GB2 distribution is a generalization from the beta distribution with pdf:1453

fB(zij|p, q) =
1

B(p, q)
zp−1
ij (1− zij)

p+q (20)

via the transformation zij =
(
yij
bij
)a

1 + (
yij
bij
)a

. Hence the cdf of GB2 distribution is given by:1454

FGB2(yij|a, bij, p, q) =
∫ zij

0

tp−1(1− t)(q−1)

B(p, q)
dt =

B(zij|p, q)
B(p, q)

= FB(zij|p, q) (21)

where B(zij|p, q) is the incomplete beta function.1455

The GB2 is directly relevant for quantile regression models since one may also find its quantile1456

function in closed form according to the following expression:1457

QY (u) =

exp

(
α0 +

m∑
k=1

αkxijk

)
B(p, q)

B(p+ 1/a, q − 1/a)

(
F−1
B (u|p, q)

1− F−1
B (u|p, q)

) 1
a

. (22)

There are many widely known and utilized sub-families of the GB2 family, we present two1458

examples of relevance to the context of risk margin estimation that we will explore, corresponding1459

to the generalized gamma and the gamma distribution sub-families.1460

3.2.2.4. Two Special Cases of GB2. To understand the flexibility of the GB2 family of models,1461

we consider the case when q = ∞, then the resulting GB2 distribution sub-family becomes the1462

generalized gamma (GG) distribution, see discussion in McDonald (1984). The GG family of1463

models was independently introduced by Stacy (1962), as a three parameter distribution with pdf1464

given by:1465

fGG(yij|a, bij, p) = lim
q→∞

a
bij
(
yij
bij
)ap−1

B(p, q)[1 + (
yij
bij
)a]p+q

=
a(

yij
bij
)ap exp[−(

yij
bij
)a]

yijΓ(p)
, for yij > 0 (23)

where a and p are shape parameters and bij is scale parameter linked to the mean of the distribution1466

as:1467

bij =
µijΓ(p)

Γ(p+ 1/a)
(24)

and the mean is again log-linked to a linear function of covariates in (18). The cdf is

FGG(yij|a, bij, p) =
∫ zij

0

tp−1e−t

Γ(p)
dt =

γ1(zij|p)
Γ(p)

= FG(zij|1, p)
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where γ1(zij|p) is the lower incomplete gamma function and zij = (
yij
bij
)a. Hence, the quantile1468

function is given by:1469

QY (u) =

exp

(
α0 +

m∑
k=1

αkxijk

)
Γ(p)

Γ(p+ 1/a)

(
F−1
G (u|1, p)

) 1
a (25)

The second case is nested within the GG family and corresponds to the two parameter Gamma1470

distribution which is obtained by further restricting a = 1. Its pdf and quantile function are well-1471

known and can be expressed using equations (23) and (25) by replacing a with 1.1472

Having defined clearly the three different quantile regression distributional families that will1473

be considered in the parametric quantile regression framework, we now introduce the different1474

regression structures we consider in the quantile regression under each distributional assumption.1475

3.2.3. Structural Components of the Quantile Regression Framework. In the model struc-1476

tures we will adopt, as is standard practice in regression modelling, once we believe we have1477

suitable explanatory variables for the dependent variable quantity of interest, in this case the con-1478

ditional quantile function, we will assume the observations are independent.1479

In the following subsections we explain how under each different distributional assumption for1480

the conditional quantile regression structure, one may introduce a link function to relate regression1481

models using independent covariates to the response quantiles in order to model trend behaviors1482

in the location and scale of the quantile function. To simplify all the possible different model1483

considerations we consider only log link functions in all regressions.1484

The possible regression structures we consider will be classified as: location based explanatory1485

factors i.e. trends in accident and development years; and scale (heteroskedascity / variance) based1486

explanatory factors for accident and development years. We note that when it comes to different1487

distributional choices since we may transform the observations, we are actually considering both1488

additive and multiplicative (mixed interaction) terms in our regressions and as such we explore1489

aspects of ANOVA as well as ANCOVA regression structures in the quantile regression setting. A1490

summary of the model structures we consider for the location and scale components of each model1491

is provided in Table 3.7 in Appendix 1. We note that in general one may consider that a version1492

of the ANCOVA model was applied to the PP and AL models and a version of the ANOVA model1493

was effectively applied to the AL and GB2 families. In addition we will allow the influence of1494

covariates to affect different quantile levels to different extents, making for an interesting analysis1495

on the effect of model structure on quantile level.1496

We note that since the focus of this manuscript differs to that undertaken in the Poisson-Tweedie1497

regression context of Peters et al. (2009), in that the focus of the regression model comparison1498
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FIGURE 3.4. Basis function regression structure for development years in location

parameter in the AL model (M1·)
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will be primarily concerned with the model choice for the distributional form of the conditional1499

quantile function, not so much on the model structure uncertainty related to all possible covariate1500

model sub-space structures and nested models, therefore we limit the analysis to the ANOVA and1501

ANCOVA structures given below. If one is interested in specialized techniques to explore and1502

compare all possible models sub-spaces within each distributional model, we suggest the approach1503

adopted in Peters et al. (2009), or recently in Verrall and Wuthrich (2014).1504

3.2.3.1. Location: Development and Accident Year Trend Model Structures. The primary sets1505

of covariates we consider correspond to the accident year and the development year in the claims1506

reserving structure, as well as transformations of these through basis functions. From Table 3.71507

one may observe that we label models using two subscripts according to their mean and variance1508

functions respectively. Models 0• (denoted by M0·) and 1• (denoted by M1·) are parsimonious1509

location structure specifications for the general model in (9) with m = 2, that is, the additive1510

structure is given by:1511

Model 0•: µ∗
ij = α0 + α1 × i+ α2 × j, (26)

Model 1•: µ∗
ij = α0 + αS

1F1(j) + αC
2 F2(j). (27)

Under M0· one assumes a linear trend across accident and development years. If a non-linear1512

trend across development years is considered with an assumption of common behavior down the1513

accident years, on may consider M1· which is a basis regression model popular in term structure1514

models and known as the Nelson-Seigel model (Nelson and Siegel, 1987). Examples of typical1515

basis functions we considered under this choice for the location are given in Figure 3.4 below,1516

where we show the ‘level’, ‘slope’ and ‘curvature’ structure of the location trend from such a1517

model. In the graph, we show the decomposition of the role the level, slope and curvature basis1518

functions which play in the regression with example coefficients: α0 = 1, αS
1 = 0.5, αC

2 = 2 and1519

λ = 0.5 with j ∈ {1, 2 . . . , J} in years.1520
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In the context of an ANOVA model specification for the location one can assume a form given1521

by:1522

Model 2•: µ∗
ij = α0 + α1i + α2j. (28)

This location (trend) function corresponds to the general model in (9) with m = 2,

α1xij1 = α1i and α2xij2 = α2j.

The parameters α1i and α2j denote the accident year and development year effects respectively and1523

they satisfy the following constraints:1524

α11 = α21 = 0. (29)

This parametrization is set up in the context of loss reserving so that all parameters are relative to1525

the first accident year which has the most information. These location functions (26) to (28) apply1526

to both AL and PP distributions in general. For Gamma, GG and GB2 distributions with positive1527

support ℜ+, a log link function is considered and the location functions become µij = exp(µ∗
ij).1528

When the AL distribution, with the shape parameter p = u is applied, Model 3• (M3·) corresponds1529

a nonparametric quantile function1530

Model 3•: µ∗
ij,u = α0,u + α1i,u + α2j,u (30)

where α•,u are parameters at quantile level u.1531

3.2.3.2. Scale: Development and Accident Year Variance Model Structures.1532

There are different choices for the structure of the variance function for the AL and PP distribu-1533

tions but Gamma, GG and GB2 distributions do not have a component to model σ2 directly. Model1534

• 0 (M·0) assumes homoscedastic variance σ2
ij = σ2. Models •0 (M·0) to •3 (M·3) are specified1535

below:1536

Model •0 : σ2
ij = σ2, (31)

Model •1 : σ2
ij = exp(β0 + β1i), (32)

Model •2 : σ2
ij = exp(β0 + β2j), (33)

Model •3 : σ2
ij = exp(β0 + β1i + β2j), (34)

where the parameters β1i and β2j which denote the accident year and development year effects1537

respectively satisfy the following constraints:1538

β11 = β21 = 0. (35)

Again Models •1 to •2 corresponds to (10) with β1sij1 = β1i and β2sij2 = β2j . Furthermore, for1539

Model 23’, the shape parameter in the AL distribution is further modelled by the accident year1540

effect, which is specified as follows:1541

Model 23’ : pi = ϕ0 + ϕ1i. (36)
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where the parameters ϕ1i denote the accident year effect and satisfy the following constraints:1542

ϕ11 = 0. (37)

3.3. Bayesian Framework: Posterior Quantile Regression1543

The estimation of quantile regression models is straightforward to adopt under a Bayesian formula-1544

tion. One of the key advantage of using Bayesian procedures for practical models such as those we1545

develop above lies in the adoption of available prior information and the provision of a complete1546

predictive distribution for the required reserves (De Alba, 2002).1547

To complete the posterior distribution specification in each model it suffices to consider the1548

representation of two components: the likelihood of the data for the regression structure (that is,1549

the density not the quantile function); and the prior specifications for the model parameters. In1550

the above sections, the quantile function of the likelihood is presented, along with the associated1551

density for the observations conditional upon the parameters and covariates, that is, the likelihood1552

for each model. Therefore, to formulate the Bayesian structure we simply need to present the prior1553

structures we consider for the parameters in each model. This will be relatively straightforward for1554

models formed from the AL distribution structure and the GB2 structures, but not so trivial for the1555

case of the PP model.1556

In the real data examples we consider below, we adopt an objective Bayesian perspective in1557

which we consider relatively uninformative priors. This reflects our lack of prior knowledge for the1558

model parameters likely ranges or magnitudes. For instance, the priors for parameters (coefficients)1559

in mean, variance and skewness quantile regression functions are all selected as Gaussian:1560

α0, α1, α
S
1 , α1i, α2, α

C
2 , α2j, β1i, β2j, ϕ0, ϕ1i ∼ N(0, 100) (38)

and for the shape parameters of the GB2 distribution are:1561

a ∼ N(0, 100), p ∼ Ga(0.001, 0.001), q ∼ Ga(0.001, 0.001). (39)

Normal and gamma distributions are standard choices of priors for parameters with a real and1562

positive support respectively, see discussions on possible choices in Denison et al. (2002). In the1563

case of the AL and GB2 models, these priors combined with the resulting likelihoods produce in1564

each case standard and well defined posterior distributions.1565

In the case of the PP model one has to be careful to define the posterior support to ensure the1566

resulting distribution is normalized and therefore a proper posterior density. To ensure this is the1567

case one must impose constraints on the posterior support which can be uniquely characterized1568

by the three sets of parameter space constraints Ω1, Ω2 and Ω3, for coefficient vectors α, β and1569
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(γ1, γ2) respectively, given by:1570

Ω1 =

{
(α0,u, . . . , αm,u) : α0,u +

m∑
k=1

αk,uxijk < yij, ∀i, j ∈ {1, 2, . . . , I}

}
,

Ω2 =

{
(β0,u, . . . , βν,u) : β0,u +

ν∑
k=1

βk,usijk > ϵ > 0, ∀i, j ∈ {1, 2, . . . , I}

}
,

Ω3 = (0,M ]× (0,∞), M ∈ ℜ+.

(40)

Under these parameter space restrictions the resulting posterior for the PP model can be shown to1571

be well defined as a proper density, see a derivation and proof in Theorem 1 of ?.1572

In ? they consider an MCMC scheme for the resulting posteriors based on standard Metropolis-1573

Hastings steps with rejection when the proposed parameter values fail to satisfy the posterior sup-1574

port constraints. In general this results in a very slowly mixing MCMC chain which will have1575

very poor properties. We replace this idea with simple block Metropolis within Gibbs updates1576

which allow for smaller moves in each component of the constrained posterior support making1577

it more likely to satisfy the constraints and also simpler to design and tune the proposal for the1578

MCMC scheme. This was a significant improvement compared to the approach proposed in ?. We1579

implement this sampler in R. For the other Bayesian models from the AL and GB2 models, sam-1580

pling from the intractable posterior distributions involved the Gibbs sampling algorithm (Smith1581

and Roberts, 1993; Gilks et al., 1996) and Metropolis-Hastings algorithm (Hastings, 1970; Me-1582

tropolis et al., 1953) are the most popular MCMC techniques. For readers who are less familiar1583

with Bayesian computation techniques, we suggest the WinBUGS (Bayesian analysis Using Gibbs1584

Sampling) package, see Spiegelhalter et al. (2002). The MCMC algorithms that are implemented1585

for each model in WinBugs and R are available upon request.1586

In the Gibbs sampling scheme, a single Markov chain is run for 60,000 to 110,000 iterations,1587

discarding the initial 10,000 iterations as the burn-in period to ensure convergence of parameter es-1588

timates. Convergence is also carefully checked by the history and autocorrelation function (ACF)1589

plots. The every 10-th simulated values from the Gibbs sampler after the burn-in period are sam-1590

pled to mimic a random sample of size 5000 to 10,000 from the joint posterior distribution for1591

posterior inference. Parameter estimates are given by the posterior means.1592

3.4. Quantile Prediction for Risk Measures, Risk Margin1593

As discussed in the introduction, the predicted reserves are typically performed in a claims re-1594

serving setting by predicting the mean reserve in each cell in the lower triangle Dl. Other methods1595

for reserving may involve the quantification of a risk measure based on the distribution of the pre-1596

dicted reserves, in place of the mean predicted reserve, such as VaR, Expected Shortfall (ES) or1597

Spectral Risk Measures (SRM), see discussions in the tutorial review of Peters et al. (2013). In1598
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addition, in order to quantify the uncertainty in a central measure for the predicted reserve, one1599

may alternatively take the central measure of reserve and make a risk margin adjustment based on1600

the distribution of the predicted reserves in the form of a quantile function.1601

When calculating any of these required measures for the resulting total outstanding reserves1602

one requires to first obtain the predictive density, which under the Bayesian setting can be obtained1603

for instance in one of the following two ways for each Yij ∈ Dl:1604

• Full Predictive Posterior Distribution:

FYij
(yij|D0) =

∫ yij

0

fYij
(y|D0) dy =

∫ yij

0

∫
fYij

(y|θ) π (θ|D0) dθ dy.

Here, all posterior parameter uncertainty is integrated out of the predictive distribution.1605

• Conditional Predictive Posterior Distribution:

FYij

(
yij|θ̂ (D0)

)
=

∫ yij

0

fYij

(
y|θ̂ (D0)

)
dy

where the point estimator θ̂ (D0) contains the information from the upper triangle. Ex-1606

amples of common estimators include the posterior mean θ̂ (D0) = θ̂
(MMSE)

or mode1607

θ̂ (D0) = θ̂
(MAP )

.1608

Using these predictive distributions, one may also be interested in quantities such as the distribution1609

of the total outstanding claim given by the sum of the losses in the lower triangle according to the1610

random variable YT :=
∑

(i,j)∈Dl

Yij which has distribution given under the full predictive posterior1611

distribution according to convolution given by1612

FYT

(
yt|θ̂ (D0)

)
:= ∗(i,j)∈Dl

FYij

(
y|θ̂ (D0)

)
=
(
FYI,2

∗ FYI−1,3
∗ FYI−2,4

∗ · · · ∗ FYI,I

) (
y|θ̂ (D0)

)
.

(41)

where, one convolves the distributions for the loss elements in the lower triangle with ∗ the con-1613

volution operator. One can then state several features about the tail behavior of the total loss1614

distribution and also therefore of the high quantiles as y → ∞, depending on the properties of the1615

individual loss random variables in the sum. For instance, if one has loss distributions on ℜ+ then1616

one can obtain the lower bound given by1617

FYT

(
yt|θ̂ (D0)

)
:=
(
FYI,2

∗ FYI−1,3
∗ FYI−2,4

∗ · · · ∗ FYI,I

) (
y|θ̂ (D0)

)
∼ c

∑
(i,j)∈Dl

FYij

(
y|θ̂ (D0)

)
, as y → ∞,

(42)

for some c ≥ 1. Note, if at least one of the lower triangle losses Yij is distributed according1618

to a heavy tailed loss distribution, such as sub-exponential, regularly varying or long tailed loss1619

distributions then one can find the precise value for c. For instance if the total loss is max-sum1620
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equivalent, then c = 1, see definitions for regular variation, sub-exponential, long tailed and max-1621

sum equivalence in Bingham et al. (1989) and in the context of insurance and quantile function1622

approximations as discussed here, see the recent tutorial and references therein from Peters et al.1623

(2013).1624

These conditional predictive distributions can be obtained for any model approximately by1625

solving the integrals using the Markov chain Monte Carlo samples obtained from the posterior1626

π (θ|D0). Then, given a predictive distribution, one can then find quantile functions according to1627

the following approaches:1628

• Full Predictive Posterior Quantile Function: is given by QYij |D0 (u) := F−1
Yij

(yij|D0)

which is the solution to the second order ordinary differential equation:

d

dQYij |D0

fYij

(
QYij |D0 (u) |D0

)(dQYij |D0

du

)2

+ fYij

(
QYij |D0 (u) |D0

) d2QYij |D0

du2
= 0,

which is obtained by twice differentiating the following identity:1629

FYij

(
QYij |D0 (u) |D0

)
=

∫ QYij |D0
(u)

0

fYij
(y|D0) dy = u. (43)

The solution to this second order ordinary differential equation can often be found in the1630

form of a power series, see discussions in Gyorgy and Shaw (2008).1631

• Conditional Predictive Posterior Quantile Function:1632

Q
Yij |θ̂(D0)

(u) := F−1
Yij

(
u|θ̂ (D0)

)
(44)

which is the most convenient choice that we recommend since the inverse of the predic-1633

tive distribution in this case takes the closed form expressions for the particular model1634

considered as detailed in Section 2.2.1635

• Conditional Total Reserve Posterior Quantile Function: In many cases one is also1636

interested in finding the quantile function of the distribution corresponding to the total1637

reserve, which under conditional independence is given by F−1
YT

(
yt|θ̂ (D0)

)
where this1638

is given by the quantile function of the distribution in Equation 41. In general finding the1639

convolution and inverse of this convolved distribution must be done numerically. There1640

are many basic results known about these quantities such as asymptotic results and bounds1641

for different properties of light and heavy tailed random variables, independent or depen-1642

dent, see a discussion in Kaas et al. (2000).1643

Light Tailed Run-off for Claims Process: In the case in which no loss cells in1644

the claims triangle are heavy tailed, then in general one would need to approximate the1645

tail quantile for the partial sum of all losses. In Kaas et al. (2000) they study partial1646

sums of random variables with no assumption of independence or of identical marginal1647

distributions. The only assumption is that the tails are not so heavy for each marginal,1648

such that each marginal has finite mean. It will be useful to recall that for two random1649
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variables X and Y , X proceeds Y under convex ordering X ≤CX Y iff for all convex1650

real functions g(·) with finite expectations one has1651

E [g(X)] ≤ E [g(Y )] . (45)

Thus, two random variables X and Y with equal mean are convex ordered if their cdfs1652

cross once.1653

Then one can show that in such cases for any sequence of loss distributions
{
FYij

}
(i,j)∈Dl

1654

the following convex order relationship holds1655 ∑
(i,j)∈Dl

Yij ≤CX

∑
(i,j)∈Dl

F−1
Yij

(U) (46)

for U ∼ U [0, 1], see derivations in Goovaerts et al. (2000). This result means that the total1656

loss YT in the convex order sense, comprised of the most risky joint vector of losses with1657

given marginals, has the comonotonous joint distribution. The components of which are1658

maximally dependent since all components are non-decreasing functions of a common1659

random variable U .1660

Hence, we consider the following quantile function approximation for the total loss1661

based on the most conservative estimate using the above bound, given by1662

F−1
YT

(u) =
∑

(i,j)∈Dl

F−1
Yij

(u). (47)

Note, in the case of heavy tailed losses this can be refined for large quantiles as follows.1663

Heavy Tailed Run-off For Claims Process: Alternatively, if additional features of1664

the loss distributions in the lower triangle are known, such as these loss models contain1665

at least one heavy tailed loss distribution, then one can bound the total quantile function1666

result. This can be done conservatively by instead considering the T -fold convolution of1667

the distribution, say F (∗T )
Yi∗j∗

which correspond to the loss distribution amongst all the lower1668

trianglular loss elements with the dominant index of regular variation (that is, with the1669

heaviest tails). In such cases it would be popular to utilize an asymptotic result for the1670

quantile function of the sum, as the quantile level becomes large u → 1. For instance,1671

one could use the first order or second order asymptotic results, see discussions in Peters1672

et al. (2013); Cruz et al. (2014). As an example, if the quantile regression was structured1673

such that the distribution of the partial sum YT =
∑

(i,j)∈Dl
Yij ∼ FYT

is regularly varying1674

with index ρ ≥ 0 with conditionally i.i.d. Yij with each Yij taking positive support, then1675

one can write the first order tail approximation which is asymptotically equivalent to the1676

following1677

F YT
(y) ∼ T F Yi∗j∗(y), y → ∞, (48)
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see detailed tutorial in Peters et al. (2013). This would lead to the approximation of the1678

required quantile asymptotically by the expression1679

Q
YT |θ̂(D0)

(u) := inf
{
y ∈ R+ : FYT

(y) > u
}

≈ inf
{
y ∈ R+ : T F Yi∗j∗(y) < 1− u

}
≈ Q

Yi∗j∗|θ̂(D0)

(
1− 1− u

T

)
:= F−1

Yi∗j∗

(
1− 1− u

T
|θ̂ (D0)

) (49)

3.5. Model Structure Analysis for Israel data1680

In this section we perform two core studies: The first involves isolating the structural components1681

for the quantile regressions, in order to perform a study on the mean function and variance func-1682

tions that are most suitable for an example of a representative claims reserving data set. This is1683

therefore performed using the non-parametric and Bayesian formulations of the AL model with1684

different assumptions on the mean and variance functions. The second involves isolating the dis-1685

tributional choices of the quantile regression, where we take the best fitting parametric model mean1686

and variance function structures and use these to study distributional properties under the different1687

quantile function choices.1688

The data set used throughout this section is interesting for such a benchmark exercise as it has1689

been previously studied and its features are reasonably well known, see Chan et al. (2008) for more1690

details on the Israel Data set. The data is available in Figure 3.18 in Appendix I and represents the1691

paid out claim amounts yij for an Israel insurance company, covering periods from 1978 to 1995,1692

containing 171 observations. For mathematical convenience, two zero claim amounts have been1693

replaced with 0.01. Some general trends are observed in this data. Given an accident year, the1694

claim development amounts generally increase between the first 4 to 6 development years then this1695

increase is followed by a generally decreasing trend thereafter. The mean, median, variance and1696

kurtosis of this data are 4459.7, 3,871, 12,059,232.6 and -0.4 respectively. The overall skewness is1697

0.58 and on a log scale is -2.67.1698

This data has been studied in Chan et al. (2008) using the generalized-t (GT) distribution ex-1699

pressed as scale mixtures of uniform which facilitates the Bayesian implementation. They adopt1700

the ANOVA and ANCOVA mean structures to study the accident year and development year ef-1701

fects on the conditional mean functions but not on any quantile level. Moreover they also remark1702

that the log transformed data become negatively skewed which the symmetric GT distribution fails1703

to accommodate. Hence, they suggest to adopt some skewed error distributions to improve the1704

model performance.1705
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Our primary point of departure for these previous studies on this data is the conjecture that using1706

a measure of average effects may not be appropriate for understanding loss reserves at higher quan-1707

tiles. Higher quantile projection is critical in loss reserving, for reinsurance premium calculations1708

and also in deriving the risk margin. In this section, we use all the models in Section 2 for quantile1709

projection with an aim to provide a more comprehensive study on model performance with a wide1710

range of distributions having different tails behavior and model structures for the quantile trends1711

and heteroscedasticity in the accident and development years.1712

3.5.1. Analysis of Quantile Regression Models: Location and Scale. To investigate the1713

model structures for location (mean) and scale (variance) functions, we consider two settings: the1714

first class of models involves the parametric models using the AL distribution with p either fixed1715

(denoted by fix) or left to be estimated (denoted by est), the mean functions given by (26) to (28)1716

and variance being constant (Models 00-20) or given by (34) (Models 03-23); the second class of1717

models involves a set of nonparametric models which are also studied with mean function (28) and1718

variance being constant or given by (34) (Models 30 and 33) using AL as a proxy distribution with1719

p fixed at different quantile levels.1720

For model comparison, deviance information criterion (DIC) is adopted, see Appendix III for1721

details. Since, models with smaller DIC are preferred to those with larger DIC, then the results1722

of the model comparisons provided in Table 3.1 show that among the parametric models, M231723

which incorporates an ANOVA model for both accident and development years in modelling both1724

the mean and variance functions is the best fitting model according to DIC. This show that the1725

accident year and development year effects are both important in describing the dynamics of the1726

mean and variance. Hence, these ANOVA-type mean and variance functions are applied to most1727

of the subsequent analyses whenever possible. For the nonparametric models, M33 with ANOVA1728

variance provide better fit than M30 with constant variance.1729

TABLE 3.1. Estimates of p and model fit measures for AL parametric and non-

parametric models

Models DIC D̄† D̂‡ p Models DIC D̄† D̂‡ p

Variance Constant Variance Function

M00 195.41 255.21 315.02 0.85 (est) M03 272.82 334.74 396.66 0.93 (est)

M10 223.30 284.10 344.91 0.88 (est) M13 199.14 247.49 295.85 0.95 (est)

M20 50.94 120.17 189.40 0.81 (est) M23 -20.81 24.91 70.63 0.75 (est)

M30 55.94 125.61 195.28 0.30 (fix) M33 -37.06 38.34 113.74 0.30 (fix)

M30 73.10 152.26 231.43 0.50 (fix) M33 -38.80 35.51 109.82 0.50 (fix)

M30 55.26 132.56 209.87 0.75 (fix) M33 -17.33 53.40 124.12 0.75 (fix)

M30 44.86 116.38 187.91 0.95 (fix) M33 -64.26 3.68 71.62 0.95 (fix)

† D̄ is the posterior mean deviance Eθ[−2 log f(y|θ)]; ‡ D̂ = −2 log f(y|θ̄) where θ̄ is the posterior mean of θ
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Between parametric model M23 and nonparametric models M33, the nonparametric models1730

provide better model performance according to DIC. These models correspond to the AL models1731

with mean and variance functions and we study their performances for a range of fixed quantile1732

levels p ∈ {0.3, 0.5, 0.75, 0.95} as shown in Figure 3.5. This plot demonstrates the quantile-1733

quantile plot for the fitted models at different quantile levels, indicating appropriate fits from the1734

specified model structures for a range of different quantile levels.1735

FIGURE 3.5. QQ plot for nonparametric models M33 at different quantile levels
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In addition, we investigate the trends of development year effects as depicted in Figure 3.61736

which reports the fitted loss Ŷ1j = exp(µ∗
1j) where µ∗

1j is given by (28) and calculated using the1737

conditional predictive posterior quantile function in (44) for the first accident year (i = 1). The1738

quantile levels u correspond to the shape parameter p set to 0.3, 0.5, 0.75 and 0.95 respectively in1739

AL distribution. The figure demonstrates that there is a clear requirement for a nonlinear trend in1740

the development year covariate at all quantile levels which uniformly increases up until j = 4 and1741

subsequently decreases thereafter at all quantile levels. Furthermore, the trends of fitted loss at all1742

quantile levels agree with this observed trend.1743
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FIGURE 3.6. Fitted loss of the first accident year across quantiles using M33

with AL distribution
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To conclude the benchmark analysis on model structure we also present for the best model M331744

with mean and variance functions the estimated model trends for all accident years, depicted in1745

Figure 3.7 as five triangular heat maps. The heat maps each depict the fitted loss by accident and1746

development years in the upper triangle at all five quantile levels, where the first row corresponds1747

to that which was studied in Figure 3.6. All heat maps show a consistent trend across development1748

years for all accident years and quantile levels with high levels of loss as indicated by light colours1749

being around the fourth development year, particularly for lower accident years. With increasing1750

quantile levels, the width of light colours for each accident year increases showing higher levels of1751

fitted losses around the peak.1752
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FIGURE 3.7. Fitted loss of the upper triangle across quantiles usingM33 with
AL distribution
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Although nonparametric models have lower DIC values, Table 3.1 shows that parametric1753

model M23 actually provides comparable model fit according to D̄s before model complexity1754

penalty was applied. This is because parametric models with additional shape parameters are1755

subject to heavier model complexity penalty. However it should be noted that parametric models1756

provide better model fit in general over a range of models and quantile levels. In addition, the1757
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parametric models have a significant advantage that they will be more readily interpretable as well1758

as directly usable when calculating risk margins and quantile based risk measures as long as the1759

quantile functions are in closed form, as was discussed in Section 3.4. For the mean structure1760

corresponding to model choice M2· under parametric model we also studied different variance1761

structures, in order to explore the different choices of variance functions under the AL distribution.1762

TABLE 3.2. Parameter estimates and model fit measures for AL models with

ANOVA mean and various variance functions

Models DIC D̄ D̂ MSE p σ2

M20 50.94 120.17 189.40 1015.71 0.80 0.02

M21 -4.32 56.66 117.64 849.91 0.74 0.04

M22 6.63 54.29 101.95 755.66 0.68 0.19

M23 -20.81 24.91 70.63 850.10 0.75 0.17

Again, we confirm that amongst all models with AL distribution, M23 which incorporates both1763

accident and development year effects for the mean and variance demonstrates the best model fit1764

according to DIC. On the other hand, MSE favors M22 which adopts only development year1765

effect for the variance. One possible reason might be that the payments made in different accident1766

years are relatively stable compared to those across development years, and hence the development1767

year effect dominates in the variance estimation.1768

3.5.2. Analysis of Quantile Regression Models: Quantile Distribution.1769

In this section we analyze the different model choices from the distributional perspective. This1770

is not directly trivial to achieve, since each model has different features that must be taken into1771

consideration in the comparison. It is clear from previous studies that one should always utilize an1772

ANOVA-type mean function with accident and development years effect (M2·), or at a minimum1773

incorporate a quadratic or basis function form for the development year effects such as M1·. In the1774

case of the GB2 and AL models we will therefore consider mean structures in M2·. However, in1775

the case of the PP model we will consider M1·, since purely from a computational perspective it1776

will be easier to implement an efficient MCMC sampler for M1· compared to M2·. The reason for1777

this is due to the rejection stage in the Metropolis-Hastings acceptance probability where under1778

the PP model the posterior constraint regions will be easier to satisfy with less model complexity.1779

In terms of the variance functions, when working with the GB2 models, we will consider M2· in1780

which we do not specify variance functions as there is no variance parameter in the distribution to1781

model the variance directly. The variance of the models are given by (19). Then in the case of the1782

AL model we consider M20 as well as M23 and for the PP model we consider M10 and M13.1783
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Table 3.3 reports the results split according to models with constant, unspecified and dynamic1784

variance functions. In the case of constant or unspecified variance, the best performing model is1785

again the AL model, followed by the GG model. Among distributions in the GB2 family with1786

positive support, GG provides the best model fit according to DIC with model complexity penalty1787

while GB2 model provides the best model prediction according to MSE. Comparing D̄s without1788

model complexity penalty, GG and GB2 provide very similar model fit. Besides, it is clear that the1789

PP model with only the basis function regression structure for the mean, given by a quadratic poly-1790

nomial for the trend in the development year covariate, and a constant variance was not sufficient1791

to capture all the features required. We believe that this is largely due to the fact that such a model1792

is more suitable for heavy tailed run-off in the claims development and the Israel data clearly does1793

not display such a feature. It is therefore expected that such a heavy tailed quantile regression1794

model will not perform as well for this data. When the variance is also modeled, the AL model is1795

clearly significantly better than all the other models considered, again making M23 with AL model1796

optimal compared to all choices. Since, the PP model is shown to be not suitable for this data, we1797

will consider analyses going forward with only the GB2 and AL models.1798

TABLE 3.3. Parameter estimates and model fit measures for models with various distributions

Models DIC D̄ D̂ MSE a p q σ2

Quantile Regression: Unspecified Variance Function

M2· Gamma 3064.50 3028.93 2993.36 537.82 1 1.87 ∞ -

M2· GG 2707.42 2932.97 3158.52 582.78 33.22 0.08 ∞ -

M2· GB2 3002.82 2964.60 2926.37 526.65 -7.94 1.78 0.17 -

Quantile Regression: Constant Variance Function

M10 PP 3272.14 1021.71 1230.01 1132.12 - - - 14.15

M20 AL 50.94 120.17 189.40 1015.71 - 0.80 - 0.02

Quantile Regression: Non-Constant Variance Function

M13 PP 1502.19 1906.49 2310.98 923.00 - - - 9.10

M23 AL -20.81 24.91 70.63 850.10 - 0.75 - 0.17

Next, we compare the standardized residuals for the GB2, Gamma and GG models under struc-1799

ture in M2· against the best fitting AL model, that is M23 with p̂ = 0.75. We first assess how1800

well these models perform in sample, by looking at the following fitted model densities, versus1801

the histograms of standardized residuals, displayed in Figure 3.8. This plot shows that M2· with1802

GB2 distribution and M23 with AL distribution and p̂ = 0.75 provide good fit to the standardized1803

residuals whereas gamma distribution provides the worst fit.1804
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FIGURE 3.8. Standardized residual plot
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Then, for out of sample analysis we display in Figure 3.9 the median predicted total claim1805

reserve under the GB2 and AL (p = 0.5) models. To compare these models for the out-of sample1806

predictions we compare fitted losses of the four models by plotting Ŷ (p) against the percentile p1807

where Ŷ (p) refers to the p-th percentile of all Ŷij = µij in the upper triangle arranged in ascending1808

order. We can see that the fitted losses using AL model are closest to the observed losses, GG and1809

GB2 models provide very similar fitted losses and gamma model provides the poorest fit.1810

FIGURE 3.9. Percentiles of fitted losses in the upper triangle using GB2 fam-
ily and AL distributions
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TABLE 3.4. Selected percentiles of fitted losses in the upper triangle using GB2

and AL models

Models 0.30 0.50 0.75 0.90 0.95

Observed 1,985 3,871 6,990 9,327 10,200

M2· Gamma 2,760 4,496 8,036 9,600 10,700

M2· GG 2,378 4,498 6,451 7,486 8,040

M2· GB2 2,480 4,463 6,526 7,737 8,247

M23 AL (p = 0.5) 2,255 3,734 6,422 8,696 9,715

Table 3.4 reports the observed and fitted loss Ŷ (p) for p = 0.3, 0.5, 0.75, 0.9 and 0.95 using the1811

four models. As the model assessments show adequate model fits, we apply the models to predict1812

losses at different quantile levels. Figure 3.10 presents boxplots of quantiles QY (u|xij) for losses1813

in each cell of the upper triangle for a given quantile level u and model. Comparing across models,1814

the boxplots for AL model have the heaviest right tails and the ranges of boxplots differ more at1815

higher quantile level. In particular, the ranges for gamma and AL models increase much faster1816

across quantile levels than the GG and GB2 models.1817

FIGURE 3.10. Boxplots of predicted quantile in the upper triangle using GB2

family and AL distributions
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These features can also be observed in Figure 3.11 which plot quantiles QY (u|xij) in each boxplot1818

in ascending order. This is similar to Figure 3.9 but the percentile of quantilesQY (u|xij)
(p) instead1819

of fitted Ŷ (p)
ij is plotted against the percentile p. Each line in Figure 3.11 corresponds to a quantile1820

level u = 0.3, 0.5, 0.75, 0.9 and 0.95. These so called empirical quantile lines are dense for GG1821

model, sparse for gamma model and moderate for GB2 model indicating that GB2 distribution1822
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provides quantile estimates which can reasonably cover the observed losses across percentile p1823

when the quantile level u gradually increases. We also remark that the empirical quantiles for1824

AL model in the log scale are convex rather than concave and are more dense because of the log1825

transformation.1826

FIGURE 3.11. Percentiles of predicted quantiles in the upper triangle using GB2

and AL models
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Then Figure 3.12 plots the quantile functions QY (u|xo) across quantile levels u ∈ (0, 1) using1827

(22) for gamma, GG and GB2 in the GB2 family of distributions and exp(QY ∗(u|xo)) in (8) where1828

Qϵ∗(u) = F−1
z∗ (u) is given by (11) for AL distribution. Note that the mean µ in QY (u|xo) or µ∗1829

in exp(QY ∗(u|xo)) is given by the average of exp(µ∗
ij) or µ∗

ij over risk cells in the upper triangle.1830

Again AL distribution has the heaviest right tail because of the log transformation.1831

FIGURE 3.12. Quantile functions using GB2 family and AL distributions
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We further adopt these models to calculate the outstanding reserves (OR) as reported in Table1832

3.5 using the conditional predictive posterior approach in (47) where the conditional total reserve1833

posterior quantile function is adopted for the case of light tailed run-off in the claim process be-1834

cause the claim distribution was shown to be light tailed in the previous analyses. Under the1835

Solvency II framework, insurers will have to establish technical provisions to cover future claims1836

expected from policyholders. Insurers must also have available financial resources sufficient to1837

cover both a minimum capital requirement and a SCR. The SCR is based on a VaR measure cali-1838

brated to a 99.5 percent confidence level over a one-year time horizon. Results in Table 3.5 show1839

that the OR projection increases gradually up to 95 percentile quantile levels but increases dramat-1840

ically at 99.5 percentile.1841

TABLE 3.5. Outstanding reserves at different quantile levels using GB2 family and

AL distributions

Models 0.30 0.50 0.75 0.90 0.95 0.995

M2· Gamma 127,816 198,907 324,515 474,073 581,302 920,142

M2· GG 203,207 248,409 291,457 314,482 323,346 337,658

M2· GB2 152,315 225,017 311,625 377,154 413,525 512,731

M23 AL 145,031 176,926 314,454 435,402 462,980 560,430

3.6. Risk Margin: Australian Case Study1842

In general the guidance on calculation of risk margin by regulators leaves flexibility in the prac-1843

tical modelling approach adopted by practitioners. There are a few popular approaches considered1844

in practice, some of which involve a degree of expert opinion. In this section we aim to consider1845

only approaches based on statistical models and in particular percentile and quantile based meth-1846

ods. In this context the standard practice is to consider the reserve estimate and then try to quantify1847

the uncertainty associated with the reserve estimator. This uncertainty is typically measured via a1848

standard error, which is utilized to adjust the reserve. Traditionally, if a loss distribution produces1849

an estimator for the reserve which admits a normal distribution (approximately under a central1850

limit theorem result), then setting the risk margin to equal the sample estimator for the reserve plus1851

0.675 times the sample estimators standard deviation would result in risk margins calibrated to ap-1852

proximately the 75th percentile. Note, whilst the total loss distribution may not have finite second1853

moment if a heavy tailed run-off is present, the variance of the sample estimator for the distribution1854

of the reserve will always be well defined. It should be noted that this method suffers from draw-1855

backs as there is both an influential judgment in determining the appropriate multiple, especially1856

when the normality assumption is not present due to sample estimators distribution being skewed.1857

81



Alternatively, one may utilize the quantile regression model obtained for the total loss distribu-1858

tion. There are two basic ways this may be achieved, for instance one could take instead of a mean1859

reserve, a quantile based reserve. This could be via a risk measure such as VaR which represents1860

a tail quantile of the total loss distribution at say 99.95%, in which case one may judge that a con-1861

servative measure of reserve is obtained from such a tail measure and so no additional risk margin1862

is required. This is standard in banking regulations such as Basel II/III and being considered in1863

insurance regulations.1864

Alternatively, one may take a central measure as the reserve such as the median of the total1865

loss distribution and make a risk margin adjustment based on the tail quantile of the total loss1866

distribution at say 75% (as is considered in practice).1867

Thirdly, if the traditionally utilized estimate of reserve based on the mean of the loss distribution1868

is considered, then two scenarios may arise if one uses the risk margin adjustment based on the1869

tail quantile of the total loss distribution at say 75%. In this case the estimated mean reserve could1870

be below the desired risk margin quantile level of the total loss distribution, in which case it may1871

be reasonable to make no further adjustment if the risk margin is already at a tail quantile such as1872

75%. Alternatively, if the estimated mean reserve is below the desired risk margin quantile level1873

of the total loss distribution, then the difference would be the resulting risk margin.1874

In this section, we are going to extend the best model, model M23 with AL distribution, in1875

the previous sections to model risk margin statistically. To achieve this, we generalise the AL1876

distribution to model the shape parameter p via the following regression pi = ϕ0 + ϕi where ϕ01877

is the intercept and ϕi denotes accident year effect. Accident year effect is chosen because risk1878

capital allocation is by accident years. It is worth noting an important assumption which are stated1879

as underlying this method: actual outstanding claim payments are assumed to be uncorrelated1880

between accident years. Therefore, the estimated shape parameter p, which presents quantile in1881

AL distribution, and also infers risk margin in the percentile method, is an applicable risk margin1882

estimate for outstanding claims payments. The difference between our proposed method and the1883

traditional method is also demonstrated in Figure 3.13.1884
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FIGURE 3.13. Traditional method (upper) versus proposed method (lower)

The data that we used to demonstrate our model is the amount of payments for all the com-1885

pulsory third party (CTP) policies in Queensland (QLD) as of June 2008. CTP insurance policy1886

covers risk that would be referred to as Auto Bodily Injury in the U.S. and Motor Bodily Injury in1887

the U.K.. The data are in the units of millions summarized by accident and development quarters1888

covering periods from December 2002 to June 2008. It contains 276 observations over 23 accident1889

quarters. In order to remove the influence of inflation for reserving purposes, we utilize the aver-1890

age weekly earning index from the Australian Bureau of Statistics (ABS) to inflate all the values1891

to December 2008 dollars. Hence, the data used in this analysis represents the inflated cumulative1892

payment for QLD CTP portfolio as reported in Figure 3.19 in appendix I.1893

FIGURE 3.14. Observed variance of QLD CTP payment data by accident year
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FIGURE 3.15. Observed skewness of QLD CTP payment data by accident year
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To review features of the data, Figure 3.14 plots the observed variance across accident year1894

on original and log scale. It shows that the variance fluctuates a lot across accident year on the1895

original scale but displays a sharp drop on the log scale. Figure 3.15 shows that the skewness are1896

mostly negative on the original and log scales. The overall skewness of the data is 0.61 and that on1897

a log scale is -1.08. Trend of skewness reveals a sharp drop at the start and then it fluctuates across1898

accident years for data on the original scale but increases monotony for data on the log scale. These1899

changes confirm the necessity of adopting dynamic variance and skewness in modelling the data.1900

Among choices of distributions, the AL distribution allow flexibility in modelling variance1901

and skewness through modelling directly the scale and shape parameters σ2 and p respectively.1902

Furthermore, in the context of nonparametric regression using AL as a proxy distribution for model1903

implementation, p indicates the quantile level of a model which corresponds to risk margin in loss1904

reserving. In the analysis of QLD CTP data, we adopt the ANOVA type model (M23) for the mean1905

and variance as it has been shown to provide the best model performance. We further propose1906

modelling the risk margin p as a linear function of accident year. One reason is that as accident year1907

increases, there are more uncertainty involved in estimating the reserves; hence it is an important1908

factor in risk margin estimation. This model is called M23′ in the Appendix.1909

Then M23′ with dynamic variance and skewness is compared to two models, M20 with constant1910

variance and skewness and M23 with just dynamic variance in Table 3.6. Although M20 outper-1911

form M23′ according to DIC, M23′ provides the best model fit according to D̄ which measures1912

model fit alone, discounting model complexity penalty. As our aim is to provide the most accurate1913

risk margin estimates, we adopt M23′ in the subsequent risk margin analysis. From a modelling1914

perspective, it reconciles with our risk margin estimation approach.1915
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TABLE 3.6. Parameter estimates and model fit measures for ANOVA models using

QLD CTP payment data

Models DIC D̄ D̂ E(Y )V ar(Y )S(Y )

M20 Constant variance & skewness -322.55 -215.65 -108.75 4.33 0.008 -0.28

M23 Dynamic variance -311.36 -197.71 -84.06 7.67 0.22 -0.57

M23′ Dynamic variance & skewness -255.03 -229.46 -203.90 4.77 0.10 -0.18

Figure 3.16 demonstrates how the estimated risk margin p̂i changes across accident years, super-1916

imposed with its creditable interval. Figure 3.17 displays the corresponding changes in estimated1917

variance and skewness using the variance and skewness equations in (12) and (13) respectively.1918

The risk margin p̂ starts at 0.895 at accident year 1 when the variance is quite high. Afterwards,1919

it decreases gradually to 0.439 in accident year 8 when the variance is much smaller. From ac-1920

cident year 17 onwards, the risk margin increases again when the variance is large and there are1921

more development years ahead. In actuarial practice, the calculation of the risk margin is often1922

not based on a sound model but various simplified methods are used. This approach enables us to1923

calculate a risk margin for non-life insurance run-off liabilities in a mathematically consistent way,1924

and provides reasonable risk margin estimates.1925

FIGURE 3.16. Change of p across accident year using M23′ for risk margin analysis
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FIGURE 3.17. Estimated variance and skewness in M23′ for risk margin analysis
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3.7. Conclusion1926

We have applied the quantile regression model to estimate loss reserve and risk margin. Quan-1927

tile regression reveals relationships between responses at the upper or lower quantiles, which is1928

of significant interest in estimating risk margin and VaR in insurance and finance applications.1929

Compared to mean regression, it is more robust to heavy tailed data. We compare the performance1930

of parametric and non-parametric quantile regression. In the parametric framework, we built five1931

models, namely AL, PP, GB2, GG and gamma. The AL model provides the best fit. We also1932

investigate three different regression structures, namely ANCOVA, ANOVA and Poisson-Tweedie1933

regression. The ANOVA model performs the best in our empirical data study.1934

Furthermore, we adopt the best performed model, which is the AL model with ANOVA mean1935

and variance functions, to estimate risk margin. The generalized AL model with a dynamic shape1936

parameter p provides us a mathematically consistent way of estimating risk margin. Overall, the1937

results of our studies indicate that this new risk margins framework offers considerable potential1938

benefits for reserving purpose. However, the drawback is that quantile functions may cross over1939

particularly at extreme quantiles when data are rare. Extreme quantile may not be estimated pre-1940

cisely. Although there is no simple solution to this problem yet, we believe it is important to be1941

aware of this limitation when using this framework.1942
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APPENDIX I1943

FIGURE 3.18. Israel payment data

FIGURE 3.19. QLD CTP payment data
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APPENDIX III1945

Model Selection1946

To compare between different models, we utilise the deviance information criteria (DIC) and1947

the mean sum of squared error MSE. The former is a Bayesian analogue of Akaike’s Information1948

Criterion (AIC) which is commonly used in Bayesian analysis. It consists of a measure of model fit1949

which is the posterior mean deviance D̄ = Eθ[−2 log f(y|θ)], and a measure of model complexity1950

which is an estimate of the effective number of parameters p̂ given by the difference between1951

posterior mean deviance D̄ and D̂ = −2 log f(y|θ̄).1952

The DIC is given by1953

DIC = − 4

K

K∑
k=1

I∑
i=1

I−i+1∑
j=1

ln
[
f(yij|θ(k))

]
+ 2

I∑
i=1

I−i+1∑
j=1

ln
[
f(yij|θ)

]
(50)

where θ(k) denotes the vector of parameter estimates in the k-th iteration of the posterior sample of1954

sizeK, θ̄ denotes the posterior mean of θ(k) and f(yij|θ) represents the densities in (3.2), (3.3) and1955

(16) respectively for AL, PP and GB2 distributions where µ∗
ij and σ2

ij are given by the models in1956

Section 2.3. The advantage of DIC over other criteria in Bayesian model selection is that the DIC1957

is easily calculated from the samples generated by an MCMC simulation. Claeskens and Hjort1958

(2008) show that the DIC is large-sample equivalent to the natural model-robust version of the1959

AIC.1960

While the DIC measures the model fit and penalizes model complexity, the MSE defined as

MSE =
1

N

I∑
i=1

I−i+1∑
j=1

(yij − µij)
2

assesses the accuracy of model prediction by comparing the observed yij with fitted µij for losses1961

in the upper triangle. Obviously, models with small MSE indicate close agreement and hence1962

provide good models predicting losses in the lower triangle.1963
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CHAPTER 4

A Copula Based Paid-Incurred Claims Models1964

The Bayesian reserving model based on payment data has been extended to quantile functions1965

to derive risk margin, as discussed in Chapter 3. This Chapter extends the payment based models to1966

combine claims payments and incurred losses information into a coherent reserving methodology,1967

using a Data-Augmented mixture Copula Paid-Incurred claims model.1968

4.1. Background1969

As discussed in Merz and Wuthrich. (2010) the main task of reserving actuaries is to predict1970

ultimate loss ratios and outstanding loss liabilities. In general such predictions are based on past1971

information that comes from a variety of sources. Under a credibility based framework, the weight-1972

ing of different data sources and their relative contribution to the estimated reserve is difficult to1973

determine. Therefore, it is important to consider developing a unified prediction framework for the1974

outstanding loss liabilities, known as the paid-incurred-claims (PIC) class of models. However, to1975

date only simple dependence structures have been considered, with three parameters for the cor-1976

relations which were not incorporated into the formal Bayesian estimation approach, and instead1977

fixed deterministically a priori. There are two technical difficulties in extending the current re-1978

strictive assumptions within a Bayesian framework. The first is being able to generate the positive1979

definite matrices; the second is evaluating the joint likelihood of the mixture copula defined over1980

the observed payments and incurred losses in each accident year row of the reserving matrix. Our1981

article significantly extends the dependence structure of current PIC models by solving these two1982

problems. The first problem is resolved through utilisation of a class of matrix-variate Inverse-1983

Wishart priors coupled with an adaptive Markov chain sampler that restricts the proposed Markov1984

chain states to remain on the manifold of such matrices. The second problem is solved by using a1985

data augmentation strategy which treats the unobserved parts of the loss triangle as missing data so1986

that one can perform evaluation of the copula based likelihood required for inference on the model1987

parameters.1988

In order to ensure the financial security of an insurance company, it is important to predict1989

future claims liabilities and obtain the corresponding prediction intervals which take into account1990

parameter uncertainty. The PIC model is a claims reserving method which statistically combines1991

information about claims payments and incurred losses. It allows actuaries to best utilise the1992
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available information for loss reserves. The Munich chain ladder method introduced by Quarg1993

and Mack (2004) is one of the first claims reserving approaches in the actuarial literature to unify1994

outstanding loss liability prediction based on both sources of information. This method aims to1995

reduce the gap between the two chain ladder predictions that are based on claims payments and1996

incurred losses data, respectively. It is achieved by adjusting the chain ladder factors with paid-1997

incurred ratios to reduce the gap between the two predictions. The main drawback with the Munich1998

chain ladder method is that it involves several parameter estimates whose precisions are difficult to1999

quantify within a stochastic model framework.2000

Merz and Wuthrich. (2010) recently introduced a log-normal PIC chain model and used Bayesian2001

methods to estimate the missing (future) part of the claims reserving triangles based on both pay-2002

ment and loss incurred information. Its major advantage is that the full predictive distribution of2003

the outstanding loss liabilities can be quantified. One important limitation of the model of Merz2004

and Wuthrich. (2010) is that it does not develop the dependence properties of the PIC model that2005

will be applicable to loss reserving data observed in practice. Our thesis extends the proposed2006

Bayesian PIC models of Merz and Wuthrich. (2010) to capture additional dependence structures.2007

4.1.1. Brief Background. Dependence within payment data, within incurred loss data, and2008

even between payment and incurred loss data commonly exists due to the nature of the loss pro-2009

cess. Payment and incurred loss ratios in the previous development period are likely to impact2010

that of the next development period. Hence, correlation between development periods is practi-2011

cally appealing in claims reserving practice. Moreover, incurred loss is essentially payment data2012

plus case estimates which are projections foreseen by case managers to estimate the remaining2013

payments. Correlation between payment and incurred loss data is also found. Happ and Wuthrich2014

(2011) propose a fixed covariance structure to describe the correlation between payment and in-2015

curred loss, assuming that the correlations between different development periods are identical. In2016

reality, correlations differ across development periods for various reasons, such as different stages2017

of the life cycle for a claim and internal policy changes. In order to fully incorporate the actual2018

correlations, we introduce a block covariance structure to allow for the variation between differ-2019

ent development periods within payment and incurred losses. We also develop a second class of2020

hierarchical mixture of copulas models.2021

The estimation challenge involves constructing and sampling from the resulting Bayesian mod-2022

els for PIC with flexible dependence structures. To specify the model, we vectorize the triangular2023

random structures for payments and incurred loss and, applying appropriate permutations, we then2024

assume a copula dependence structure on the vectorized data. We use a Gaussian copula with an2025

unknown correlation matrix, which is restricted to be block diagonal for parsimony, or a mixture2026

Archimedian copulas across development periods.2027
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We estimate the Bayesian models by MCMC methods, using data augmentation to generate2028

missing data values in the loss triangle and use an adaptive Metropolis algorithm to generate the2029

unknown parameters. Bayesian simulation methodology is used to carry out inference on all as-2030

pects of the models considered and to obtain predictive distributions for reserves.2031

4.1.2. Contributions. We design a novel class of PIC models and illustrate it with two ex-2032

amples. The first involves a mixture of Clayton and Gumbel copulas for upper and lower tail2033

dependence features in the development years for payments and incurred losses. The second ex-2034

ample involves a Gaussian copula model in which the covariance structure is a telescoping block2035

diagonal form representation which captures dependence between development lag years in the2036

payments and incurred losses. By a telescoping block diagonal matrix we mean one in which the2037

main diagonal is comprised of sub-blocks for which each incremental sub-block contains one less2038

row and column compared to the previous. In constructing these models we consider hierarchical2039

Bayesian models with hyperparameters on the priors for development factors and specially devel-2040

oped matrix-variate priors on the covariance structures which preserves the conjugacy properties of2041

the independence models developed in Merz and Wüthrich (2010) and Merz and Wüthrich (2010).2042

For the independent and Gaussian copula based PIC models we develop a class of conjugate2043

posterior models that can be efficiently estimated via an MCMC sampler known as a block Gibbs2044

sampler. However, the extension to general copula dependence structures requires non-conjugate2045

priors, making it necessary to develop adaptive MCMC algorithms. Adaptive sampling uses pre-2046

vious iterates of the Markov chain to form more efficient Metropolis proposals for the parameters,2047

this class of MCMC algorithm has received growing attention in the statistics literature since it2048

was recently developed and is now recognized as an important tool for Bayesian inference. There2049

is an increasing interest in utilizing adaptive MCMC to facilitate more efficient sampling (Andrieu2050

and Thoms. (2008), Atchadé and Rosenthal (2005)). The adaptive techniques that we adopt in2051

this chapter fall within the general framework of adaptive Metropolis, and employ the optimal2052

scale factors (Roberts and Rosenthal. (2009)) from the Single Component Adaptive Metropolis2053

(SCAM) algorithm (Haario et al. (2005b)). There have been some initial utilisations of adaptive2054

MCMC specifically in financial modelling such as Peters et al. (2011a) and the references therein.2055

In addition the adaption strategies we consider in this paper involve extensions of Euclidean space2056

Adaptive Metropolis to the space of positive definite matrices, creating a class of matrix variate2057

Markov chain adaptive proposals.2058

In the mixture copula based PIC models, we design data augmentation strategies which are a2059

class of auxiliary variable methods. We modify these approaches to the PIC copula based models in2060

order to circumvent the challenge of intractable likelihood evaluations which arise form the struc-2061

ture of the PIC reserving triangle. In particular we argue that the tail dependence features of the2062

model should be consistent accross all development years for both payment and incurred loss data.2063
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This poses an evaluation challenge for the likelihood as it involves evaluation of marginal likeli-2064

hood quantities given the observed data in accident year i, given by payment and incurred losses.2065

The integral required when utilising mixture copula structures over the accident years is intractable,2066

therefore we introduce auxiliary variables into the Bayesian model in a data-augmentation structure2067

to overcome this dificulty.2068

4.2. Review of the Merz-Wuethrich Independence Copula Paid-Incurred Claims Model2069

This section introduces the PIC model which involves two sources of information. The first is2070

the claims payment data, which involves payments made for reported claims. The second source2071

of data incorporated into the statistical estimation are the incurred losses corresponding to the2072

reported claim amounts. The differences between the incurred losses and the claim payments2073

are known as the case estimates for the reported claims which should be equal once a claim is2074

settled. This imposes a set of constraints on any statistical model developed to incorporate each of2075

these sources of data into the parameter estimation. We use the constraints proposed in Merz and2076

Wuthrich. (2010) which are used to specify a model based on a claims triangle constructed from2077

vertical columns corresponding to development years of claims and rows corresponding to accident2078

years. This structure for the observed data is summarized in triangular form which is utlised for2079

both the claims payments and the incurred losses, including constraint on zero case estimates at2080

development period J as presented in Figure 4.1.2081

Without loss of generality, we assume an equivalent number J of accident years and develop-2082

ment years. Furthermore, we assume that all claims are settled after the J-th development year.2083

Let Pi,j be the cumulative claims payments in accident year i after j development periods and2084

Ii,j the corresponding incurred losses. Moreover, for the ultimate loss we assume the constraint2085

discussed on the case estimates corresponds to the observation that predicted claims should satisfy2086

Pi,J = Ii,J with probability 1, which means that ultimately (at time J) the claims reach the same2087

value and therefore satisfy the required constraint.2088

We define (i) P0:J,0:j = {Pk,l : 0 ≤ k ≤ J, 0 ≤ l ≤ j}. (ii) Let A and B be square matrices.2089

Then diag(A,B) is the diagonal matrix, with the diagonal elements of A appearing topmost, then2090

the diagonal elements of B. Let the matrices A and B be as in (ii). Then the direct sum of A2091

and B, written as A ⊕ B is the block diagonal matrix with A in the top left corner and B in2092

the bottom right corner. It is clear that the definitions in (ii) and (iii) can be iterated. That is2093

diag(A,B,C) = diag(diag(A,B), C) and A ⊕ B ⊕ C = (A ⊕ B) ⊕ C. (iv) Define the d × d2094

diagonal square identity matrix according to Id. (v) Define the indicator of an event by the dirac-2095

delta function δi. (vi) Define the vectorization operator on a p × n matrix A, denoted by V ec(A),2096

as the stacking of the columns to create a vector.2097
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FIGURE 4.1. Claims triangle for payment data and incurred data (source Merz and

Wuthrich. (2010)).

As in Merz and Wuthrich. (2010), we consider a Log-Normal PIC model as this facilitates com-2098

parison between existing results and the results we derive based on different dependence frame-2099

works in extensions to this model.2100

We now introduce the PIC model and the statistical assumptions for the independent case,2101

followed by remarks on the resulting marginal posterior models for the payment and incurred2102

losses.2103

Model Assumptions 4.2.1 (Independent PIC Log-Normal (Model I )). The model assumptions for2104

the independent model of Merz and Wuthrich. (2010) are:2105

• The cumulative payments Pi,j are given by the forward recursion

Pi,0 = exp (ξi,0) and
Pi,j

Pi,j−1

= exp (ξi,j) for j = 1, . . . , J

• The incurred losses Ii,j are given by the backward recursion

Ii,J = Pi,J and
Ii,j−1

Ii,j
= exp (−ζi,j−1) .

• The random vector (ξ0,0, . . . , ξJ,J , ζ0,0, . . . , ζJ,J−1) has independent components with2106

ξi,j ∼ N
(
Φj , σ

2
j

)
for i ∈ {0, . . . , J} and j ∈ {0, . . . , J},

ζk,l ∼ N
(
Ψl , τ

2
l

)
for k ∈ {0, . . . , J} and l ∈ {0, . . . , J − 1};

• The parameter vector for the model is Θ = (Φ0, . . . ,ΦJ ,Ψ0, . . . ,ΨJ−1, σ0, . . . , σJ , τ0, . . . , τJ−1).2107

It is assumed that the components of Θ are independent apriori. The prior density for Θ2108

has independent components, with σj, τj both positive for all j.2109
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• It follows that2110

log

(
Pi,j

Pi,j−1

)
∼ N

(
Φj , σ

2
j

)
and log

(
Ii,j
Ii,j+1

)
∼ N

(
−Ψl , τ

2
l

)
(4.2.1)

Let {P, I} = {Pi,j, Ik,l; 0 ≤ i, j, k,≤ J, 0 ≤ l ≤ J − 1}. Then, based on Model Assump-2111

tions 2.1 and the observed matrices P and I , the likelihood for Θ is given by three components,2112

see derivation in Merz and Wuthrich. (2010, Section 3.3, Equation 3.5). The first and third com-2113

ponents correspond to the payment and incurred data and the second component corresponds to2114

the imposition of the restriction that ultimate claims for payments Pi,J match incurred Ii,J for all2115

accident years, giving:2116

f (P, I|Θ) =
J∏

j=0

J−j∏
i=0

1√
2πσjPi,j

exp

{
− 1

2σ2
j

(Φj − log(
Pi,j

Pi,j−1

))2
}

︸ ︷︷ ︸
Component1: payment

×
J∏

i=1

1√
2π(υ2J−i − ω2

J−i)Ii,J−i

exp

{
− 1

2(υ2J−i − ω2
J−i)

(µJ−i − ηJ−i − log(
Pi,J−i

Pi,J−i

))2
}

︸ ︷︷ ︸
Component2: Discounted final development year restricted payment and incurred

×
J−1∏
j=0

J−j−1∏
i=0

1√
2πτjIi,j

exp

{
− 1

2τ 2j
(−Ψj + log(

Ii,j
Ii,j+1

))2
}
.︸ ︷︷ ︸

Component3: incurred

(4.2.2)

where υ2j =
∑J

m=0 σ
2
m+
∑J−1

n=j τ
2
n; ω2

j =
∑j

m=0 σ
2
m; ηj =

∑j
m=0 Φm; and µj =

∑J
m=0 Φm−2117

ΣJ−1
n=jφn.2118

As noted in Merz and Wuthrich. (2010), there are several consequences of the model assump-2119

tions made regarding the restriction Ii,J = Pi,J which applies for all i ∈ {1, 2 . . . , J}. The first2120

is that this condition is sufficient to guarantee that the ultimate loss will coincide for both claims2121

payments and incurred loss data. The second is that this model assumes that there is no tail devel-2122

opment factor beyond the ultimate year J . However this could be incorporated into such models,2123

see Merz and Wüthrich (2010).2124

Merz and Wuthrich. (2010) discuss the relationship between the proposed Independent Log-2125

Normal PIC model and existing models in the literature for payment loss based reserving and2126

incurred loss based reserving. In particular, Merz and Wuthrich. (2010) [Section 2.1 and 2.2] show2127

that the resulting cumulative payments Pi,j , conditional on model parameters Θ, will satisfy the2128

model proposed in Hertig (1985) and the incurred losses Ii,j , conditional on model parameters Θ,2129

will satisfy the model proposed in Gogol (1993). Lemma 4.2.1 summarizes their results.2130
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Lemma 4.2.1. The relationships between consecutive payment development year losses in a given2131

accident year is given conditionally according to2132 [
log

(
Pi,j

Pi,j−1

)∣∣∣∣P0:J,0:j−1,Θ

]
∼ N

(
Φj, σ

2
j

)
, ∀j ≥ 0 (4.2.3)

in agreement with Hertig’s model. With conditional moments given according to the Chain Ladder2133

property as in Merz and Wuthrich. (2010, Lemma 5.2) by,2134

E [Pi,j|P0:J,0:j−1,Θ] = Pi,j−1 exp
(
Φj + σ2

j/2
)
. (4.2.4)

Furthermore, conditional upon the model parameters Θ, for all 0 ≤ j < j+l ≤ J the relationships2135

between consecutive incurred losses in a given accident year are given in Merz and Wuthrich.2136

(2010) [Proposition 2.2] according to2137

[ log (Ii,j+l)| I0:J,0:j−1, Ii,J ,Θ] ∼ N
(
µj+1 +

ν2j+1

ν2j
(log(Ii,j)− µj) , ν

2
j+1(1− ν2j+1/ν

2
j )

)
,

(4.2.5)

These results are consistent with the model assumptions of Gogol, and are derived using properties2138

of multivariate normal distribution, see Lemma 2.1 in Merz and Wuthrich. (2010).2139

Furthermore, for all accident years i ∈ {1, 2, . . . , J}, the resulting conditional expected ultimate2140

payment loss equals the expected ultimate incurred loss, given the model parameters Θ, and is2141

expanded in terms of the model parameters according to Equation (4.2.6), which are given by2142

Merz and Wuthrich. (2010, Equation 1.1) as,2143

E [Pi,J |Θ] = E [Ii,J |Θ] = exp

(
J∑

m=0

Φm + σ2
m/2

)
. (4.2.6)

4.3. Incorporating the Gaussian Copula into Paid-Incurred-Claims Models2144

This section discusses an important aspect of extending the original Log-Normal PIC model2145

of Merz and Wuthrich. (2010). In particular, when this model was developed in the independent2146

setting it was observed by the authors that the assumption of conditional independence between2147

ξi,j and ζk,l for all i, j, k, l ∈ {1, 2, . . . , J} was not necessarily consistent with observations. In2148

particular, they note that Quarg and Mack (2004) discovered evidence for strong linear correlation2149

between incurred and paid ratios. In Section 3.1 we explore in detail a different approach to incor-2150

porate dependence structures into the Log-Normal PIC model. Some aspects of the new approach2151

have subsequently been proposed in the literature, while others are novel developments proposed2152

in our article. We note that in developing the extended models, the convenient properties of con-2153

jugacy in the Bayesian framework, which aids estimation, is often lost. Hence, after presenting2154
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the models we develop efficient state of the art statistical estimation strategies based on adaptive2155

MCMC.2156

4.3.1. Dependence via Payment Loss Ratios and Incurred Loss Ratios (Model II). This2157

section generalizes the model by Happ and Wuthrich (2011), which has a static covariance struc-2158

ture, see Happ and Wuthrich (2011, Figure 1.1). We use a Bayesian approach, based on results2159

in Lemma 1.2 and Model Assumptions 4.3.1, to estimate the extended models. We use proper-2160

ties of the matrix-variate Wishart and Inverse Wishart distributions to develop a Gaussian copula2161

based statistical model. The relevant matrix-variate distributional assumptions and properties are2162

provided in Lemma 1.2 and Lemma 1.3.2163

Model Assumptions 4.3.1 (Dependent Payment-Incured Ratios: PIC Log-Normal (Model II )).2164

The model assumptions for the Gaussian copula PIC Log-Normal model involve:2165

• The random matrix Σi ∈ R(2J+1)×(2J+1) representing the covariance structure for the2166

random vector constructed from log payment ratios
(
ξi,j = log

(
Pi,j

Pi,j−1

))
and log in-2167

curred loss ratios
(
ζi,j = log

(
Ii,j

Ii,j+1

))
in the i-th development year, denoted by Ξi =2168

(ξi,0, ξi,1, ζi,1, ξi,2, ζi,2, . . . , ξi,J , ζi,J), is assumed distributed according to an inverse Wishart2169

distribution prior (see definition and properties in Lemma 1.2 and Lemma 1.3),2170

Σi ∼ IW (Λi, ki) (4.3.1)

where Λi is a ((2J + 1)× (2J + 1)) positive definite matrix and ki > 2J .2171

• Conditionally, given Θ = (Φ0, . . . ,ΦJ ,Ψ0, . . . ,ΨJ) and the (2J + 1) × (2J + 1)-2172

dimensional covariance matrix Σ, we have:2173

– The random matrix, constructed from log payment ratios
(
ξi,j = log

(
Pi,j

Pi,j−1

))
and

log incurred loss ratios
(
ζi,j = log

(
Ii,j

Ii,j+1

))
, denoted by Ξ and comprised of columns

Ξi = (ξi,0, ξi,1, ζi,1, ξi,2, ζi,2, . . . , ξi,J , ζi,J), is assumed distributed according to a

matrix-variate Gaussian distribution fMVN
Ξ (Ξ|M,Σ,Ω), see the definition and prop-

erties in Lemma 1.1. The sufficient matrices are then the ((2J + 1)× (J + 1)) mean

matrix M = [Θ′, . . . ,Θ′], column dependence given by ((2J + 1)× (2J + 1)) di-

mensional covariance matrix Σ and row dependence given by ((J + 1)× (J + 1))

dimensional matrix Ω. If Ω = IJ+1, the covariance of the vectorization of Ξ̃ =
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V ec(Ξ) is

Σ̃ = Cov
(
Ξ̃
)
=

J⊕
i=0

Σi =


Σ0 0 . . . 0

0 Σ1 . . . 0
...

. . .
. . .

...

0 0 0 ΣJ

, (4.3.2)

where it is assumed in the model in Happ and Wuthrich (2011) that Σi = Cov(Ξi) =

Σ. However, this need not be the case and it is possible to consider two extensions,

the first in which Cov(Ξi) varied as a function of i ∈ {0, 1, . . . , J} and the second

being the most general of these model structures given by the assumption

Cov
(
Ξ̃
)
= Σ⊗ Ω. (4.3.3)

– For all accident years, i ∈ {0, 1, . . . , J}, the ultimate payment losses and incurred2174

losses are equal a.s., Pi,J = Ii,J .2175

• The matrix Σ̃ is positive definite and the components of Θ are independent with prior2176

distributions2177

Φi ∼ N
(
ϕi, s

2
i

)
and Ψj ∼ N

(
ψj, t

2
j

)
, (4.3.4)

and hyper-prior distributions2178

s2i ∼ IG (αi, βi) and t2j ∼ IG (aj, bj) , (4.3.5)

for all i ∈ {1, . . . , J} and j ∈ {0, . . . , J}.2179

This model extends the model developed in Happ and Wuthrich (2011) which assumes that2180

Σ is fixed and known with a tri-diagonal structure. The extension we consider generalizes the2181

dependence structure to be unknown a priori and given an inverse Wishart prior for matrix Σ̃, so2182

it forms part of the inference given the data, in the Bayesian inference. In addition, unlike in Happ2183

and Wuthrich (2011) where they assume Σ = Σi,∀i ∈ {0, 1, . . . , J}, we also allow for variation2184

in Σi across development years.2185

Given these model assumptions, we now consider two consequences of the proposed model2186

structures for the dependence between the log payment ratios and the log incurred loss ratios given2187

in Lemma 4.3.1 and Lemma 4.3.2.2188

Lemma 4.3.1. Conditional upon Λi and ki, for all i in {0, 1, . . . , J}, and given the marginal dis-

tributions for Σi follow Σi ∼ IW (Λi, ki) with Λi a ((2J + 1)× (2J + 1)) positive definite matrix

and ki > 2J , the joint distribution for the ((2J2 + 3J + 1)× (2J2 + 3J + 1)) covariance matrix
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Σ̃ for the vectorized matrix for Ξ, given by Ξ̃ = V ec(Ξ), under the assumption of independendence

between development years,

Σ̃ = Cov
(
Ξ̃
)
=

J⊕
i=0

Σi = (Σ0 ⊕ · · · ⊕ ΣJ), (4.3.6)

results in a joint distribution given by:2189

Σ̃ ∼ IW
(
Λ̃, k̃

)
, (4.3.7)

with degrees of freedom k̃ =
∑J

i=0 ki > 2J2 + 3J and scale matrix2190

Λ̃ =
J⊕

i=0

Λi. (4.3.8)

Furthermore, the joint prior mean and mode for the distribution of the random matrix Λ̃ are2191

E
[
Σ̃|Λ̃, k̃

]
=

1(∑J
i=0 ki

)
− (2J2 + 3J)

Λ̃, and

m
(
Σ̃
)
=

1

2J2 + 3J + 1 +
∑J

i=0 ki
Λ̃.

(4.3.9)

The proof of this result is a consequence of the results in Lemma 1.2, the model assumptions2192

and the properties of an inverse Wishart distributions; see Gupta and Nagar (2000)[Chapter 3].2193

�2194

Remarks 4.3.2. We can demonstrate that under the proposed model assumptions the selection2195

of the factorized covariance structure in Lemma 4.3.1 produces Bayesian conjugacy in the joint2196

posterior of the model parameters given observed payment losses and incurred losses.2197

Remarks 4.3.3. It is noted in Happ and Wuthrich (2011) and Lemma 4.3.1 that in formulating2198

the likelihood structure for this dependent model it is more convenient to work with the one-to-one2199

(invertible) transformation for the observed data defined marginally for the i-th development year2200

according to2201

[X i|Θ] = [BiΞi|Θ] ∼ N (BiMi, BiΣiB
′
i) , (4.3.10)

where Mi is the i-th column of matrix M and X i ∈ R2J+1 defined by2202

X i = [log Ii,0, logPi,0, log Ii,1, logPi,1, . . . , log Ii,J−1, logPi,J−1, log Ii,J ]. This results in the joint2203

matrix variate Normal distribution for random matrix X = [X ′
0,X

′
1, . . . ,X

′
J ] of all observed2204

losses for payment and incurred data given after vectorisation X̃ = V ec (X) by2205 [
X̃|θ

]
=
[
BΞ̃|Θ

]
∼ N

(
BV ec(M), B (Σ⊗ Ω)BT

)
. (4.3.11)
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Furthermore, if we consider the property of multivariate Gaussian distributions given in Lemma2206

4.3.2 we can find for the i-th accident year the required conditional distribution of the unobserved2207

claims for payment and incurred loss data under the specified model. Furthermore, we can find the2208

conditional distribution for unobserved claims for payment and incurred losses in the i-th accident2209

year, given all observed claims triangles for payments and incurred losses data, see Lemma 4.3.22210

below. This is directly relevant for specifying the resulting likelihood model.2211

Lemma 4.3.2. Consider a (n × 1) random vector Y with multivariate Gaussian distribution,2212

Y ∼ N (µ,Σ), where µ = [µ1, . . . , µn] and Cov (Y ) = Σ, and partition Y =
[
Y (1)′ , Y (2)′

]′
.2213

Then the conditional distribution of Y (1) given Y (2) and the marginal distribution of Y (1) is2214 [
Y (1)|Y (2)

]
∼ N

(
µ̄, Σ̄

)
, (4.3.12)

with µ̄ = µ1 + Σ1,2Σ
−1
2,2

(
Y (2) − µ(2)

)
and the Schur complement Σ̄ = Σ1,1 − Σ1,2Σ

−1
2,2Σ2,1 under2215

the partitioning of the mean and covariance given by2216

µ =

 µ1

µ2

 and Σ =

 Σ1,1 Σ2,1

Σ1,2 Σ2,2

 . (4.3.13)

Definition 4.3.4 below defines a family of permutation matrix operators. This permutation2217

family allows the representation of the vectorization of the two loss triangles under different per-2218

mutations that facilitate dependence specifications in the proposed models that admit conjugacy.2219

Definition 4.3.4. Let Y be an n× n matrix, with Ỹ = [Y1,1, Y1,2, . . .]
′ and with V ec(Y ) defined as2220

V ec(Y ) = [Y1,1, Y1,2, . . . , Y1,n, Y2,1, . . . , Y2,n, . . . , Yn,n]
′. Define the family of permutation matrix2221

operators, denoted by P∗
i and indexed by p× 2, p ≤ n2, indices matrix (vector of tuple elements)2222

i with j-th element [i ]j = {(k, l) ; k, l ∈ {1, 2, . . . , n}}, and defined according to the mapping2223

P∗
i : V ec(Y ) 7→ V ec(Y )∗ given by2224

P∗
i (V ec(Y )) = P ∗

i V ec(Y )

=

[
Y[i ]

1

, Y[i ]
2

, . . . , Y[i ]
p

, V ec(Y )′\i

]′
,

(4.3.14)

where we define Y[i ]
j

as the element of matrix Y corresponding to the resulting tuple index loca-2225

tion in the j-th element (column) of (tuple vector) i , P ∗
i an n2 × n2 permutation matrix defined2226

by2227

P ∗
i = Pi ⊕ In2−p =

 Pi 0n2−p,n2−p

0n2−p,n2−p In2−p

 , (4.3.15)

and Pi is a matrix with only non-zero identity elements at the p locations in the indices matrix2228

tuples in i corresponding to index elements.2229
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Using the property of the multivariate Gaussian distribution in Lemma 4.3.2, one can state the2230

result in Proposition 4.3.5 which is based on a generalization of the result in Happ and Wuthrich2231

(2011)[Lemma 2.1] to the model developed above. We consider two cases for the dependence2232

structures in Proposition 4.3.5 and Proposition 4.3.6.2233

Proposition 4.3.5. Consider the i-th accident year. Conditional on the model parameters Θ and2234

the covariance matrix of the i-th accident year2235

Σi =

 [Σi]1,1 [Σi]2,1

[Σi]1,2 [Σi]2,2

 , (4.3.16)

the dependence structure Ω = IJ+1 and the observed payment losses and incurred losses in the i-th2236

accident year, denoted by X
(1)
i = [log Ii,0, logPi,0, log Ii,1, logPi,1, . . . , log Ii,J−i, logPi,J−i] with2237

X i ∈ Rq, the conditional distribution for the log of the unobserved payment losses and incurred2238

losses2239

(X
(2)
i = [log Ii,J−i+1, logPi,J−i+1, . . . , log Ii,J−1, logPi,J−1, log Ii,J ]) is given by2240 [

X
(2)
i |X(1)

i ,Θ
]
∼ N

(
µ̄(2), Σ̄i

(2)
)

(4.3.17)

where µ̄
(2)
i = µ

(2)
i + [Σi]2,1 [Σi]

−1
1,1

(
X

(1)
i − µ

(1)
i

)
and Σ̄i

(2)
= [Σi]22.2241

Proposition 4.3.6 (Conditional Distribution of Unobserved Payment and Incurred Losses). Con-2242

sider the i-th accident year and define indices for this year (vector of tuples), given by matrix2243

i = {(k, j) : ∀j ∈ {J − k + 1, . . . , J}}∪{(k, j) : ∀k ∈ {0, 1, . . . , J} , j ∈ {0, . . . , J − k}}. Then2244

consider the transformed vector of log payment and incurred losses P∗
i

(
X̃
)

defined by2245

P∗
i

(
X̃
)
∼ N

(
P ∗
i V ec(M), P ∗

i (Σ⊗ Ω) (P ∗
i )

′
)
, (4.3.18)

for which the first J − i elements of the permuted random vector
[
X̃∗
](1)

=
[
P∗
i

(
X̃
)]

1:J−i−1
2246

correspond to all un-observed payment and incurred loss random variables, and the remaining2247

J − i to J − i+
(∑J

n=−1(J − n)
)

elements are the observed payment and incurred data, denoted2248 [
X̃∗
](2)

=
[
P∗
i

(
X̃
)]

J−i:J−i+(
∑J

n=−1(J−n))
. Then, conditional on the model parameters Θ, the2249

general dependence structre Σ̃ = Σ⊗Ω with matrices Σ and Ω, and
[
X̃∗
](2)

the following results2250

hold:2251

• The conditional distribution for the log of the unobserved payment losses and incurred losses2252

in the i-th year, corresponding to the first J − i elements of the permuted random vector2253
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[
X̃∗
](1)

=
[
P∗
i

(
X̃
)]

1:J−i−1
is given by2254 [[

X̃∗
](1)

|
[
X̃∗
](2)

,Θ

]
∼ N

(
µ̄(1), Σ̄i

(1)
)
. (4.3.19)

• The covariance matrix Σ̄i
(1) is the postive definite2255 (

J − i+
(∑J

n=−1(J − n)
))

×
(
J − i+

(∑J
n=−1(J − n)

))
sub-matrix denoted below2256

by Γ and defined by the top sublock of the permuted covariance matrix2257

P ∗
i (Σ⊗ Ω) (P ∗

i )
′ =

 Γ
[
P ∗
i (Σ⊗ Ω) (P ∗

i )
′
]
2,1[

P ∗
i (Σ⊗ Ω) (P ∗

i )
′
]
1,2

[
P ∗
i (Σ⊗ Ω) (P ∗

i )
′
]
2,2

 . (4.3.20)

• Given, this covariance matrix one specifies the conditional mean vector, denoted by2258

µ̄(1) = µ(1) + Γ2,1Γ
−1
1,1

([
X̃∗
](2)

− µ(2)

)
, according to the subblocks of the Γ covari-2259

ance matrix defined with respect to the first J − i elements
[
X̃∗
](1)

and remaining ele-2260

ments of
[
X̃∗
](2)

as well as µ(1) =
[
P ∗
i V ec(M)

]
1:J−i

and the second J − i to J − i +2261 (∑J
n=−1(J − n)

)
elements are given by µ(2) =

[
P ∗
i V ec(M)

]
J−i:J−i+(

∑J
n=−1(J−n))

.2262

Having specified these statistical assumptions, we can formulate the joint likelihood from the2263

observed data for both payments and incurred claims conditional upon the model parameters ac-2264

cording to Equation (4.3.21). The joint data likelihood function in the dependent Log-Normal2265

PIC Model I for the random vector of observations corresponding to the first
∑J

n=−1(J − n) ele-2266

ments of the permuted random vector, given by
[
X̃∗
](1)

=
[
P∗
i

(
X̃
)]

1:(
∑J

n=−1(J−n))
, where we2267

define indices in this case by i = {(i, j) : ∀i ∈ {0, 1, . . . , J} , j ∈ {0, . . . , J − i}}. The resulting2268

likelihood is given by the matrix-variate Gaussian distribution in Equation (4.3.21).2269

f

([
X̃∗
](1)∣∣∣∣Θ,Σ,Ω

)
=

exp

[([
X̃∗
](1)

−
[
P∗
i (V ec(M))

](1))[[
P ∗
i (Σ⊗ Ω) (P ∗

i )
′
](1)]−1([

X̃∗
](1)

−
[
P∗
i (V ec(M))

](1))]

(2π)(
∑J

n=−1(J−n))/2
∣∣∣∣[P ∗

i
(Σ⊗ Ω) (P ∗

i
)′
](1)∣∣∣∣(

∑J
n=−1(J−n))/2

(4.3.21)

We note that our proposed models also allow one to consider the dependence structures of Happ2270

and Wuthrich (2011) who assume that Σi = Σ,∀i ∈ {0, 1, . . . , J} and Ω = IJ+1, with the specific2271

setting of Σ via a tri-diagonal correlation matrix with three correlation parameters which are as-2272

sumed either known a priori or estimated prior to inference in the PIC model. Such an approach2273
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was motivated by the belief that a positive change in incurred loss results in an immediate pay-2274

ment in the same development period, and the remaining increased expectation is paid with some2275

settlement delay. Therefore, the incurred losses increments ζji are assumed to be positively corre-2276

lated to the claims payments increments ξi,j , ξi,j+1 and ξi,j+2 with positive correlations ρ0, ρ1, ρ2,2277

respectively. However, the argument for more general dependence structure that were introduced2278

as extensions to the model of Happ and Wuthrich (2011) are developed to account for the fact that2279

these assumption may not be true, especially in long tail portfolios, such as compulsory third party.2280

If the status of a claimant changes and requires long term medical treatment and rehabilitation, it2281

might result in substantially high loss in the subsequent lengthy lag periods. The chapter also as-2282

sumes that the dependence is the same across different lag years, which is not always a realistic2283

feature of such data. Our article aims to fill this gap and enhance the correlation structure in PIC2284

models whilst maintaining a parsimonious model specification.2285

4.3.2. Dependence Between Development Lag Years for Payment Losses and Incurred2286

Losses (Model III). This section considers an alternative dependence structure motivated by the2287

fact that dependence between lag years is practically appealing in claims reserving practice. It2288

affects the estimation of outstanding claims the most, and is widely recognized by actuaries in2289

claims reserving. Lag is the measure of the difference between incurred month and paid month.2290

Depending on the nature of the portfolio, many insurance claims often have lengthy settlement2291

periods due to various reasons such as late reported claims, judicial proceedings, or schedules of2292

benefits for employer’s liability claims. During the lengthy lag periods, large payments in the2293

previous lag period normally follow by small payments in the subsequent lag period. There may in2294

fact be positive correlation if all periods are equally impacted by a change in claims status, e.g. if2295

a claim becomes litigated, resulting in a huge increase in claims cost. There may also be negative2296

correlation if a large settlement in one period replaces a stream of payments in later periods. The2297

model developed in this section mainly focuses on capturing this feature of dependence between2298

lag years. To achieve this we propose a block covariance structure for the covariance matrix,2299

which will respect the dependence between each lag point. The model we propose is summarised2300

in Model Assumptions 4.3.7 below.2301

Model Assumptions 4.3.7 (Dependent Development Lag Years: PIC Log-Normal (Model III )).2302

The following statistical model assumptions are developed:2303

• Let ΣP
i ∈ SD+(J − i) be the (J − i) × (J − i) random covariance matrix on the space2304

SD+(J − i) of positive definite covariance matrices of dimension (J − i) × (J − i)2305

corresponding to the observed payment data [logPi,0, logPi,1, . . . , logPi,J−i] in the i-th2306

accident year and analogously for incurred loss data ΣI
i ∈ SD+(J − i). When i = 0 we2307

consider ΣP
0 ∈ SD+(J + 1) and for incurred loss data log I0,0:J−1 with ΣI

0 ∈ SD+(J).2308
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Assume an inverse Wishart distribution (see Lemma 1.3 and Lemma 1.2) for each matrix2309

defined according to2310

ΣP
i ∼ IW

(
ΛP

i , k
P
i

)
and ΣI

i ∼ IW
(
ΛI

i , k
I
i

)
, (4.3.22)

where ΛP
i and ΛI

i are the inverse scale matrices for the prior for the payment and in-2311

curred loss data covariance priors respectively. Hence, the joint covariance between all2312

observed payment and incurred loss data satisfies the telescoping diagonal block size2313

covariance structure:2314

Σ̃ = Cov ([logP0,0, . . . , logP0,J , logP1,0, logP1,J−1, . . . , logPJ,0, log I0,0, . . . , log I0,J−1, . . . , log IJ,0])

=

(
J⊕

i=0

ΣP
0

)
⊕

(
J⊕

i=0

ΣI
0

)
∼ IW

((
J⊕

i=0

ΛP
0

)
⊕

(
J⊕

i=0

ΛI
0

)
,

J∑
i=0

(
kPi + kIi

))
.

(4.3.23)

• Conditionally, given Θ = (Φ0, . . . ,ΦJ ,Ψ0, . . . ,ΨJ) and the covariance matrix Σ̃, we2315

have the following results2316

– Consider the marginal distribution of the first
(∑J

n=−1(J − n)
)

elements of the vec-

torized random matrix of observed payment and incurred losses, with i-th column

X i ∈ R2J+1 given by

X i = [log Ii,0, logPi,0, log Ii,1, logPi,1, . . . , log Ii,J−1, logPi,J−1, log Ii,J ] .

Then given the matrix of permutation indices i = [(1, 2), (1, 4), . . . , (1, 2(J − 1))2317

, (2, 2), (2, 4), . . . , (2, 2J − 4), . . . , (J, 1), (1, 1), (1, 3), . . . (J − 1, 1), (J − 1, 2)] char-2318

acterizing the elements of the marginal distribution for the observations, the trans-2319

form P∗
i (V ec(X)) has multivariate Gaussian distribution with covariance structure2320

Σ̃. Note, P∗
i (V ec(X)) = [logP0,0, logP0,1, . . . , logP0,J2321

, . . . , logPJ,0, log I0,0, . . . , log I0,J−1, log I1,0, . . . , log IJ−1,0, log IJ−1,1].2322

– For all accident years, i ∈ {0, 1, . . . , J}, the ultimate payment losses and incurred2323

losses are equal almost surely, Pi,J = Ii,J .2324

• The matrix Σ̃ is positive definite and the components of Θ are independent with prior2325

distributions2326

Φi ∼ N
(
ϕi, s

2
i

)
and Ψj ∼ N

(
ψj, t

2
j

)
(4.3.24)

and hyper-prior distributions2327

s2i ∼ IG (αi, βi) and t2j ∼ IG (aj, bj) (4.3.25)

for all i ∈ {1, . . . , J} and j ∈ {0, . . . , J}.2328
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This proposed model is therefore another generalization of the dependence structure of the2329

model structure proposed in Happ and Wuthrich (2011). As such, the likelihood structure is given2330

by the multivariate Gaussian given in Equation (4.3.21) with the covariance matrix given by the2331

telescoping diagonal block size covariance matrix structure in Equation (4.3.23).2332

4.3.3. Hierarchical Bayesian Conjugacy Under Gausian Copula Dependent PIC: Models2333

I, II, III. Under the Gaussian copula based dependence models, the ability to obtain the observed2334

data likelihood in the form of a multivariate Gaussian distribution means that we obtain conjugacy2335

properties. This makes the estimation of such models by MCMC more efficient because we can us2336

Gibbs sampling in blocks. This section presents a generic set of such conjugate models for any of2337

the dependence structures specified in Models I, II and III.2338

Lemma 4.3.3. Conditional upon the parameters Θ and the covariance matrix Σ, the permuted2339

data P∗
i (V ec(X)) can be transformed to produce the independent likelihood in Equation (4.2.2).2340

This is achieved by considering the class of vector transformations T : R(d×1) 7→ R(d×1), such2341

that if the initial covariance structure of random vector X was given by Σ = Cov (X), then the2342

resulting covariance structure Cov (T (X)) = Id. The required rotation-dilation transformation is2343

obtained by the spectral decomposition of the covariance according to a spectral decomposition2344

(see Stoica and Moses (1997)) Σ = UΛ
1
2U ′ where U is a (d× d) matrix of eigenvectors of Σ and2345

Λ is a diagonal d× d matrix of the eigenvalues of Σ. Therefore the following holds for each of the2346

models under a transform of the vector of permuted observations T
(
P∗
i (V ec(X))

)
:2347

(1) Model II - When Σ̃ = Σ⊗Ω, with Ω = IJ+1 then, T
(
P∗
i (V ec(X))

)
=
(
UΛ

1
2 ⊗ IJ+1

)
P∗
i (V ec(X)) ,2348

where the ((2J + 1)× (2J + 1)) covariance Σ is decomposed as UΛ
1
2U ′.2349

(2) Model II - When Σ̃ =
⊕J

i=0 Σi, T
(
P∗
i (V ec(X))

)
=
(⊕J

i=0 UiΛ
1
2
i

)
P∗
i (V ec(X)) ,2350

where each accident year’s dependence between payments and incurred losses is given2351

by the (2J + 1)× (2J + 1) matrix Σi which is decomposed as UiΛ
1
2
i U

′
i .2352

(3) Model III - When Σ̃ =
(⊕J

i=0 Σ
P
0

)
⊕
(⊕J

i=0 Σ
I
0

)
,

T
(
P∗
i (V ec(X))

)
=

(
J⊕

i=0

UP
i

(
ΛP

i

) 1
2

)
⊕

(
J⊕

i=0

U I
i

(
ΛI

i

) 1
2

)
P∗
i (V ec(X))

where each of the covariance matrices ΣP
i and ΣI

i decomposed to UP
i

(
ΛP

i

) 1
2 (UP

i )
′ and2353

U I
i

(
ΛI

i

) 1
2 (U I

i )
′.2354

In each case, the resulting transformed random vector T
(
P∗
i (V ec(X))

)
, with elements P̃i,j and2355

Ĩi,j , will produce a likelihood model given for the transformed data according to the independent2356
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Model I of Merz and Wuthrich. (2010) as defined in Equation (4.2.2). Of course this is defined2357

now with respect to components in the likelihood corresponding to the transformed components,2358

as detailed in Equation (4.3.11).2359

Remarks 4.3.8. The consequence is that results in Lemma 4.3.3 are that the conjugacy properties2360

derived for the independent model in Merz and Wuthrich. (2010) can be directly applied post-2361

transformation. This is of direct interest for MCMC based sampling schemes.2362

In the models described so far, the following full conditional posterior distributions are now of2363

relevance to the Bayesian MCMC estimation procedures developed for Models I, II and III.2364

Lemma 4.3.4. The full conditional posterior distributions for sub-blocks of the model parameters2365

can be decomposed under Model I, II and III into a conjugate model.2366

• Conjugate Posterior Distribution for Development Factors: under the transformations2367

T
(
P∗
i (V ec(X))

)
on the data, described in Lemma 4.3.3, the full conditional posterior2368

distributions for sub-blocks of the transformed model parameters
(
Φ̃0:J , Ψ̃0:J

)
are given2369

by (see Merz and Wuthrich. (2010) [Theorem 3.4] for the independent case):2370 [
Φ̃0:J , Ψ̃0:J |Σ,Ω, T

(
P∗
i (V ec(X))

)]
∼ N (Π,∆) (4.3.26)

with posterior mean Π and posterior covariance ∆, where the components of ∆−1 =2371

(an,m)0≥n,m≤2J are each given by2372

an,m =
(
s−2
n + (J − n+ 1)σ−2

n

)
δn=m +

(n−1)∧(m−1)∑
i=0

(
ν2i − ω2

i

)−1
, for 0 ≤ n,m ≤ J,

aJ+1+n,J+1+m =
(
t−2
n + (J − n)τ−2

n

)
δn=m +

n∧m∑
i=0

(
ν2i − ω2

i

)−1
, for 0 ≤ n,m ≤ J − 1,

an,J+1+m = ∆n,J+1+m = −
(n−1)∧m∑

i=0

(
ν2i − ω2

i

)−1
, for 0 ≤ n ≤ J, 0 ≤ m ≤ J − 1;

(4.3.27)

where δn=m is the indicator of the event that index m matches n, m ∧ n is the minimum2373

of m and n and the posterior mean is given on the transformed scale by,2374

[
Φ̃0:J , Ψ̃0:J

]
= ∆

(
c̃0, c̃1, . . . , c̃J , b̃0, . . . , b̃J

)
, (4.3.28)
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with2375

c̃j = s−2
j ϕj + σ2

j

J−j∑
i=0

log

(
P̃i,j

P̃i,j−1

)
+

J∑
i=J−j+1

(
ν2J−i − ω2

J−i

)−1
log

(
Ĩi,J−i

P̃i,J−i

)
,

b̃j = t−2
j ψj + τ 2j

J−j−1∑
i=0

log

(
Ĩi,j

Ĩi,j+1

)
−

J∑
i=J−j

(
ν2J−i − ω2

J−i

)−1
log

(
Ĩi,J−i

P̃i,J−i

)
.

(4.3.29)

Given the transform vector
[
Φ̃0:J , Ψ̃0:J

]
, the parameters on the orginal scale can be ex-2376

pressed according to the unique solution to the system of linear equations:2377

(1) Model II - On the untransformed scale, the solution is given by the following system2378

of equations2379

[Φ0:J ,Ψ0:J ]
′ = U−1Λ− 1

2

[
Φ̃0:J , Ψ̃0:J

]
. (4.3.30)

(2) Model II - On the untransformed scale, the solution is given by the following system2380

of equations for each i ∈ {0, 1, . . . , J}, where we can randomly select i or determin-2381

istically scan through i for the results,2382

[Φ0:J ,Ψ0:J ]
′ = U−1

i Λ
− 1

2
i

[
Φ̃0:J , Ψ̃0:J

]
. (4.3.31)

(3) Model III - On the untransformed scale, the solution is given by the following system

of equations,

[Φ0:J ,Φ0:J−1,Φ0:J−2, . . . ,ΦJ ]
′ =

J⊕
i=0

(
UP
i

)−1 (
ΛP

i

)− 1
2

[
Φ̃0:J , Φ̃0:J−1, Φ̃0:J−2, . . . , Φ̃J

]
,

[Ψ0:J ,Ψ0:J−1,Ψ0:J−2, . . . ,ΨJ ]
′ =

J⊕
i=0

(
U I
i

)−1 (
ΛI

i

)− 1
2

[
Ψ̃0:J , Ψ̃0:J−1, Ψ̃0:J−2, . . . , Ψ̃J

]
.

• Conjugate Posterior Distribution for the Covariance Matrix: Given the transformed ob-

served payment and incurred losses have a multivariate Gaussian likelihood, as specified

in Equation (4.3.21), with covaraince matrix Σ̃ = Σ ⊗ Ω and mean vector V ec (M).

Then the posterior for the covariance matrix is the Inverse-Wishart-Gaussian distribution

detailed in Peters et al. (2011b) [Section 3] and Peters et al. (2011c)[
Σ̃|Φ0:J ,Ψ0:J , T

(
P∗
i (V ec(X))

)]
∼ IW

(
Λ + T

(
P∗
i (V ec(X))

)
T
(
P∗
i (V ec(X))

)′
, dim (V ec(X)) + k̃

)
In cases in which the covariance matrix Σ̃ takes any of the block diagonal forms presented2383

in Models II and III, we may utilise Lemma 1.2 and the result in Equation (4.3.4) to further2384

decompose the posterior covariance into blockwise components.2385
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• Conjugate Posterior Distribution for the Hyper-Parameters on Development Factors:

For all i we have the following Inverse Gamma-Gaussian conjugacy for the hyper param-

eters in Models II and III,

[
s2i |Φi

]
∼ IG

(
αi +

1

2
, βi +

(Φi − ϕi)
2

2

)
and

[
t2i |Ψi

]
∼ IG

(
ai +

1

2
, bi +

(Ψi − ψi)
2

2

)
.

We next present alternative tail dependence structures for the PIC model. Previous studies on2386

claims reserving that have incorporated copula based models, such as Zhang et al. (2012) have2387

done so through regression based frameworks. Zhang et al. (2012) develop a parametric copula2388

model to account for dependence between various lines of insurance claims. Their paper considers2389

a bivariate Gaussian copula model with marginal generalized linear models to capture the posi-2390

tive correlation between the two insurance lines. Our article significantly extends the dependence2391

modelling capability of the PIC model structure remaining in the frameworks presented above.2392

However, to do so requires the introduction of auxiliary variables to enable computation. The ap-2393

proach developed involves modifying the posterior distribution by embeding the target posterior2394

distribution for the model parameters into a much higher dimensional support comprised of the2395

original model parameters and the additional auxiliary variables. The reason for this expansion of2396

the posterior dimensions will be come clear below and is in general known in Bayesian statistics2397

as an auxiliary variable framework.2398

4.4. Incorporating Mixture-Archimedean Copula Dependence Structures into2399

Paid-Incurred-Claims Models: Model IV2400

This section presents an alternative parameteric approach to modelling and capturing depen-2401

dence and tail dependence in the PIC model structure which involves considering copula based2402

models within the PIC reserving framework. The dependence can be considered over the follow-2403

ing combinations such as:2404

(1) Independent accident years and dependence between payment losses over the develop-2405

ment years;2406

(2) Independent accident years and dependence between incurred losses over the develop-2407

ment years;2408

(3) Independent accident years and dependence jointly between payment and incurred losses2409

over the development years via a mixture copula, hierarchical copula (HAC) as in Kurow-2410

icka and Joe (2010), or a vine copula (d-vine, canononical vine) e.g. Aas et al. (2009);2411

(4) Dependent accident years and independent development years for payment, incurred or2412

both sets of losses.2413
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Our article concentrates on the mixture copula model which allows for combinations of upper2414

and lower tail dependence of different strengths. We detail the class of auxiliary variable meth-2415

ods known in statistics as Data Augmentation and demonstrate how this class of models can be2416

combined into our modelling framework to allow for consistent use of copula models in the PIC2417

framework. There are many variations that can be explored in this approach. We give one such2418

approach for Model IV, Assumptions 4.4.2, that is directly comparable to that used for Model II in2419

Assumption 4.3.1.2420

We present fundamental properties of members of the Archimedean family of copula that we2421

consider when constructing mixture copula models in the PIC framework in the Appendix, see2422

Lemma 2.1 for the characteristics of the Archimedean family of copulas and Lemma 2.2 for the2423

required distribution and densities for three members of this family. In addition references Denuit2424

et al. (2005),Aas et al. (2009),Embrechts (2009), Min and Czado (2010) and Patton (2009) provide2425

more detail.2426

In Lemma 2.1 the property of associativity of Archimedean copula models is particularly use-2427

ful in the PIC model framework as it allows us to obtain analytic expressions for the likelihood2428

structure of the matrix-variate PIC model. This is particularly useful if one specifies the model as2429

a hierarchical Archimedean Copula (HAC) construction.2430

We consider the following popular members of the Archimedean family of copula models,2431

due to their analytic tractability, their non-zero tail dependence properties and their parsimonious2432

parameterizations. In addition, generating random variates from these class of models is trivial2433

given the generator for the member of the Archimedean family of interest. Lemma 2.2 in the2434

appendix presents the three Archimedean copulas for Clayton, Gumbel and Frank copulas that we2435

consider and their properties. We use the following notation for copula densities we consider on2436

[0, 1]d, see Nelsen (2006b, Section 4.4.3, Table 4.4.1) and Lemma 2.2: the Clayton copula density2437

is denoted by cC(u1, ..., un; ρC) with ρC ∈ [0,∞) the dependence parameter; the Gumbel copula2438

density is denoted by cG(u1, ..., un; ρG) with ρG ∈ [1,∞) the dependence parameter; and the Frank2439

copula density is denoted by cF (u1, ..., un; ρF ) with ρF ∈ R/{0} the dependence parameter.2440

In addition, we also note that the properties of these copulas of interest include that the Clayton2441

copula does not have upper tail dependence, however its lower tail dependence can be expressed2442

as λL = 2−1/ρC . The Gumbel copula does not have lower tail dependence, however its upper tail2443

dependence of the Gumbel copula can be expressed as λU = 2− 21/ρ
G . The Frank copula does not2444

have upper or lower tail dependence.2445

In this class of copula dependence models we consider the marginal distribution of each log2446

payment or log incurred loss as distributed according to a Gaussian distribution and the joint distri-2447

bution vector is modelled via a mixture copula comprised of the above three components from the2448
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Archimedean family. Such a copula construction will still produce a copula as shown in Lemma2449

4.4.1.2450

Lemma 4.4.1. Consider copula distributional members Ci (u1, u2, . . . , un) ∈ An, where An de-2451

fines the space of all possible n-variate distributional members of the Archimedean family of copula2452

models, specified in Lemma 2.2. Any finite mixture distribution constructed from such copula com-2453

ponents that admit tractable density functions ci (u1, u2, . . . , un), denoted by c̃ (u1, u2, . . . , un) =2454 ∑m
i=1wici (u1, u2, . . . , un), such that

∑m
i=1wi = 1, is also the density of a copula distribution.2455

The proof of Lemma 4.4.1 is provided in Appendix 3.2456

4.4.1. Understanding Bayesian Data Augmentation. The modeling framework of Data Aug-2457

mentation in the Bayesian framework is typically invoked to deal with situations in which the2458

likelihood evaluation is intractable to perform point-wise. This would make Bayesian inference2459

in such a model also generally intractable. For example if one considers the generic likelihood2460

p (y1:n|θ) with observation random vectors Y 1:n, which can be evaluate point-wise as a function2461

of parameter vector θ with respect to a realization of the observation process y1:n.2462

In the setting we encounter in the PIC models, we can generically consider the data random2463

vector observation is partitioned into two vector sub-components Y =
[
Y (1),Y (2)

]
, of which2464

only one component, say Y (1), is actually observed. Then evaluation of the likelihood pointwise2465

for θ given a realization of Y (1)
1:n would require solving the integral in Equation 4.4.12466

p
(
Y

(1)
1:n|θ

)
=

∫
p
(
Y

(1)
1:n|θ,Y

(2)
1:n

)
p
(
Y

(2)
1:n|θ

)
dY

(2)
1:n. (4.4.1)

Generally, this integral will not admit a closed form solution. Therefore, the Bayesian Data Aug-2467

mentation approach involves extending the target posterior p
(
θ|Y (1)

1:n

)
which is intractable due2468

to the intractability of the likelihood to a new posterior model on a higher dimensional space, in2469

which the target distribution is a marginal as given in Equation 4.4.22470

p
(
θ,Y

(2)∗
1:n |Y (1)

1:n

)
=
p
(
Y

(1)
1:n|θ,Y

(2)∗
1:n

)
p
(
Y

(2)∗
1:n |θ

)
p (θ)

p
(
Y

(1)
1:n

) (4.4.2)

where Y
(2)∗
1:n are auxiliary random vectors with prior distribution p

(
Y

(2)∗
1:n |θ

)
, ’augmented’ to the2471

posterior parameter space to allow tractability of the posterior inference. This will be explained in2472

detail for the PIC copula models below.2473

4.4.2. Data Augmentation in the Bayesian PIC Copula Models. Definition 4.4.1 gives some2474

useful notation for the results that follow.2475
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Definition 4.4.1 (Auxiliary Data for Data Augmentation). Consider the defined loss data under the2476

one-to-one (invertible) transformation for the observed data given by the joint matrix for all obser-2477

vations and auxiliary variables given by X = [X ′
0,X

′
1, . . . ,X

′
J ]. In this framework, the i-th acci-2478

dent year is defined according to, X i = [log Ii,0, logPi,0, log Ii,1, logPi,1, . . . , log Ii,J−1, logPi,J−1, log Ii,J ].2479

Consider the permutation of each vector of log payments and log incurred losses given by2480

X̃ i = P∗
i (X i) = [logPi,0, logPi,1, . . . , logPi,J , log Ii,0, log Ii,1, . . . , log Ii,J−1] . Now consider2481

the further partition by the decomposition of observed log payment losses and unobserved log2482

payment losses as well as these quantities for the incurred losses defined for the i-th accident year2483

by,2484

X̃ i =
[
X̃

P

i,obs, X̃
P

i,aux, X̃
I

i,obs, X̃
I

i,aux

]
=
[
X̃

P

0,i,obs, . . . , X̃
P

J−i,i,obs, X̃
P

J−i+1,i,aux, . . . , X̃
P

J,i,aux, X̃
I

0,i,obs, . . . , X̃
I

J−i,i,obs, X̃
I

J−i+1,i,aux, . . . , X̃
I

J−1,i,aux

]

=

logPi,0, . . . , logPi,J−i︸ ︷︷ ︸
observed Payments

, logPi,J−i+1, . . . , logPi,J︸ ︷︷ ︸
unobserved Payments

, log Ii,0, . . . , log Ii,J−i︸ ︷︷ ︸
observed Incurred

, log Ii,J−i+1, . . . , log Ii,J−1︸ ︷︷ ︸
unobserved Incurred


′

.

(4.4.3)

Therefore the total data matrix of losses is given by X̃ =
[
X̃0, . . . , X̃J

]
. Note, the introduction2485

in this section of the notation subscripts obs and aux allows us to make explicit the fact that the2486

upper triangle of log payment losses and the upper triangle of log incurred losses are un-observed2487

quantities for these random variables, while the lower triangular regions for such losses are ob-2488

served. We denote these random variables as auxiliary variables (augmented) to the observed data2489

random variables to create a complete data set of all losses.2490

By considering the unobserved data in the lower payment and incurred loss triangles as auxiliary2491

variables to be jointly estimated along with the model parameters, we will demonstrate below that2492

only under this approach is consistency ensured in the copula structure of the PIC model. However,2493

we first make the following model assumptions about the statistical features of the PIC model.2494

The following assumptions illustrate a choice of copula models for the mixture from the Archimedean2495

family. However, there are many related specifications and frameworks that can be explored in this2496

context, be we leave that to future research.2497

Model Assumptions 4.4.2 (Data-Augmented Mixture Copula PIC (Model IV)). The model as-2498

sumptions and specifications for the copula model we develop involve:2499
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• Let the random matrix Σi ∈ R(2J+1)×(2J+1) be the covariance for X̃ i =
[
X̃

P

i,obs, X̃
P

i,aux, X̃
I

i,obs, X̃
I

i,aux

]
2500

with X̃ i ∈ R2J+1 for all i = 0, . . . , J . We assume that Σ is diagonal where2501

Σi,i ∼ IG (αi, βi) , ∀i ∈ {0, . . . , J} , (4.4.4)

where αi and βi are the known hyper-parameters for shape and scale.2502

• MARGINAL DISTRIBUTION: given Θ = (Φ0, . . . ,ΦJ ,Ψ0, . . . ,ΨJ) and covariance2503

matrices Σ,Ω ∈ R(2J+1)×(2J+1) and ρ, we assume the marginal distribution of the random2504

matrix, of all log payments and log incurred losses X̃ , comprised of columns X̃ i for the2505

i-th accident year is matrix-variate Gaussian with density, defined as in Lemma 1.1, with2506

the (2J + 1) × (J + 1) mean matrix M̃ = [Θ′, . . . ,Θ′], column dependence given by2507

(2J +1)× (2J +1) covariance matrix Σ and row dependence given by (J +1)× (J +1)2508

matrix Ω. Here we only consider the case of Ω = IJ+1 for the marginal independent case.2509

• DATA AUGMENTED PIC MIXTURE COPULA LIKELIHOOD: Given X̃
P

0,aux, X̃
P

1,aux, . . . , X̃
P

J−1,aux,2510

X̃
I

0,aux, X̃
I

1,aux, . . . , X̃
I

J−1,aux, Θ = (Φ0, . . . ,ΦJ ,Ψ0, . . . ,ΨJ), covariance matrices Σ,Ω ∈2511

R(2J+1)×(2J+1) and ρ, the joint distribution of the random matrix (X̃) of all log permuted2512

payment and incurred losses is assumed (in this example) to be independent between2513

accident years. For the i-th column (corresponding to i-th accident year), the joint dis-2514

tribution of all losses (X̃ i) is assumed to be hierarchical Archimedean Copula (HAC)2515

mixture copula specified by distribution,2516 [
X̃
]
•,i

∼ C̃ρi

(
F
(
X̃

P

i,obs, X̃
P

i,aux, X̃
I

i,obs, X̃
I

i,aux; [M ]•,i,Σ
))

= C̃P
ρP

i

(
F
(
X̃

P

i,obs, X̃
P

i,aux; [M ]P•i,Σ
))

C̃I
ρI

i

(
F
(
X̃

I

i,obs, X̃
I

i,aux; [M ]I•i,Σ
))

,

(4.4.5)

with supper script P and I denote the components for the log payments and log incurred2517

losses in the i-th development year respectively and the density is given by2518

f
(
X̃

P

i,obs, X̃
P

i,aux, X̃
I

i,obs, X̃
I

i,aux|[M ]•i,Σ,ρ
P
i ,ρ

I
i

)
= c̃PρP

i

(
F
(
X̃

P

i,obs, X̃
P

i,aux; [M ]P•i,Σ
))

c̃Iρi

(
F
(
X̃

I

i,obs, X̃
I

i,aux; [M ]I•i,Σ
)) 2J+1∏

j=1

ϕ(X̃j,i;Mj,i,Σi,i),

(4.4.6)

where

c̃Sρi

(
F
(
X̃

S

i,obs, X̃
S

i,aux; [M ]S•i,Σ
))

= w1c
G

ρ
(G,S)
i

(
F1,i

(
X̃

S

1,i,obs; M̃
S
1,i,Σ1,1

)
, . . . , FJ,i

(
X̃

S

J,i,aux; M̃
S
J,i,ΣJ,J

))
+ w2c

F

ρ
(F,S)
i

(
F1,i

(
X̃

S

1,i,obs; M̃
S
1,i,Σ1,1

)
, . . . , FJ,i

(
X̃

S

J,i,aux; M̃
S
J,i,ΣJ,J

))
+ (1− w1 − w2)c

C

ρ
(C,S)
i

(
F1,i

(
X̃

S

1,i,obs; M̃
S
1,i,Σ1,1

)
, . . . , FJ,i

(
X̃

S

J,i,aux; M̃
S
J,i,ΣJ,J

))
, S ∈ {P, I} ,
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and such that w1+w2+(1−w1−w2) = 1. This specifies a mixture of central, upper and2519

lower tail dependence as denoted by the mixture of Archimedian copula models made up2520

of Frank, Clayton and Gumbel members, such that for the source of data S, the copula2521

parameters for each Archimedian family member is given by ρ(G,S)
i > 0, ρ(C,S)

i > 12522

and ρ(F,S)i ∈ R/ {0}. Therefore the total conditional distribution corresponding to the2523

likelihood model considered is given by,2524

f
(
X̃|M,Σ,Ω,ρ

)
=

J∏
i=0

c̃PρP
i

(
F
(
X̃

P

i,obs, X̃
P

i,aux; [M ]P•i,Σ
))

c̃IρI
i

(
F
(
X̃

I

i,obs, X̃
I

i,aux; [M ]I•i,Σ
))

︸ ︷︷ ︸
Copula Dependence in Data Augmented PIC Likelihood

×
exp

(
−1

2
tr
[
Ω−1

(
X̃ −M

)′
Σ−1

(
X̃ −M

)])
(2π)(2J

2+3J+1)/2 |Ω|(2J+1)/2 |Σ|(J+1)/2
.︸ ︷︷ ︸

Marginal Distribution in Data Augmented Likelihood PIC Model

(4.4.7)

• Assume that the tail dependence features of the Data-Augmented copula PIC model are2525

such that the dependence structure is homogeneous accross accident years, ρP = ρP
i and2526

ρI = ρI
i for all i ∈ {0, 1, 2, . . . , J}.2527

• Conditional on Σ, Φ = [Φ0,Φ1, . . . ,ΦJ ] and Ψ = [Ψ0,Ψ1, . . . ,ΨJ ] the hierarchical2528

prior distribution on the auxiliary payment data for the i-th accident year is given by a2529

normal distribution, centered on the development year mean,2530

X̃
P

i,aux ∼ N
(
[ΦJ−i+1,ΦJ−i+2, . . . ,ΦJ ] ,Σ

P
2

)
. (4.4.8)

The hierarchical prior distribution on the auxiliary incurred loss data for the i-th accident2531

year is given by2532

X̃
I

i,aux ∼ N
(
[ΨJ−i+1,ΨJ−i+2, . . . ,ΨJ ] ,Σ

I
2

)
, (4.4.9)

with Σ2 the lower portion of covariance Σ corresponding to the lower triangle matrix2533

from (J − i+ 1) through to J for all i ∈ {0, 1, 2, . . . , J}.2534

2535

• For all accident years, i ∈ {0, 1, . . . , J}, the ultimate payment losses and incurred losses2536

are equal a.s., Pi,J = Ii,J , P− a.s.2537

• The matrix Σ̃ is positive definite and components of Θ are independent with prior distri-2538

butions2539

Φi ∼ N
(
ϕi, s

2
i

)
and Ψj ∼ N

(
ψj, t

2
j

)
(4.4.10)
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and hyper-prior distributions2540

s2i ∼ IG (αi, βi) and t2j ∼ IG (aj, bj) (4.4.11)

for all i ∈ {1, . . . , J} and j ∈ {0, . . . , J}.2541

• The matrix Σ is distributed as Σ ∼ IW (Λ, k) and the copula parameters are distributed2542

as ρG,P ∼ IG
(
αG, βG

)
, ρC,P ∼ IG

(
αC , βC

)
and ρF,P ∼ N

(
0, σF

)
2543

Hence, we have made precise the auxilliary data scheme used in formulating the Data-Augmented-2544

PIC model. In particular illustrating the importance of the role of the auxiliary data in evaluation2545

of the model and estimation of the PIC claim development factors. Also we note we get indirectly2546

via the data augmentation the distribution for the predicted payment and incurred Loss reserves.2547

Remarks 4.4.3. The following remarks provide motivation for the Data-Augmentation and result-2548

ing incorporation of auxiliary payment and incurred Losses data.2549

• The use of data augmentation in the above model structure is critical in the PIC model2550

formulation, since it allows one to ensure that the dependence structure considered (in2551

this case a HAC-Mixture) is consistent both across accident years and across development2552

years.2553

Note: In the case of a linear dependence structure such as with a covariance / correlation2554

matrix under a Gaussian Copula or Independent Copula model, such as those presented2555

previously under Models I,II, III, we have that conditional distributions and marginal2556

distributions are Gaussian. This means that the evaluation of the likelihood is analytic2557

without the need for auxiliary variables.2558

• In order to evaluate the likelihood one has two choices, to evaluate the observed data2559

likelihood (Equation (4.4.12)) or to evaluate the full data likelihood (Equation (4.4.7)).2560

– The PIC copula model equivalent of Equation 4.4.2 is the observed data likelihood2561

is given for the i-th accident year by2562

p
(
X̃

P

i,obs, X̃
I

i,obs|Θ,Σ,Ω,ρ
)

=

∫
· · ·
∫
p
(
X̃

P

i,obs, X̃
I

i,obs|Θ,Σ,Ω,ρ, X̃
P

i,aux, X̃
I

i,aux

)
p
(
X̃

P

i,aux, X̃
I

i,aux|Θ,Σ,Ω,ρ
)
dX̃

P

i,auxdX̃
I

i,aux

=

∫
· · ·
∫
c̃PρP

i

(
F
(
X̃

P

i,obs, X̃
P

i,aux; [M ]P•i,Σ
))

c̃IρI
i

(
F
(
X̃

I

i,obs, X̃
I

i,aux; [M ]I•i,Σ
))

× fMVN
X̃i,aux

(
x̃i,aux;Mi,aux,Σ

P
2 ⊕ ΣI

2

)
fMVN
X̃i

(x̃i;Mi,Σ) dX̃
P

i,aux dX̃
I

i,aux
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where matrix-variate Gaussian distributions fMVN
X () and fMVN

X are as defined in2563

Lemma 1.12564

with X̃i,aux = V ec
(
X̃

P

i,aux, X̃
I

i,aux

)
, Mi,aux = V ec ([ΦJ−i+1:J ]

′, [ΨJ−i+1:J−1]
′),2565

X̃i = [X̃
P

i,obs, X̃
P

i,aux, X̃
I

i,obs, X̃
I

i,aux] and Mi = [Φ0, . . . ,ΦJ ,Ψ0, . . . ,ΨJ ] the equiv-2566

alent mean.2567

– Clearly, the marginalization required to evaluate the Observed data likelihood in-2568

volves intractable integration, except in special cases in which the copula models are2569

Gaussian or independence copulas.2570

• The full data likelihood comprised of observed and auxiliary data involves incorporating2571

auxiliary variables to represent the unobserved data in the lower reserve triangle for pay-2572

ment and incurred loss triangles. These become part of the inference procedure and are2573

required to be estimated jointly with the model parameters in the estimation methodology.2574

4.5. Estimation via Adaptive Data-Augmented MCMC for Claims Reserving PIC Models2575

It has been shown for the Independent and Gaussian copula models that we can obtain the2576

observed data likelihood analytically. Therefore the posterior distribution for all the model param-2577

eters can be sampled via a MCMC procedure comprised of block Gibbs sampler updates. In the2578

case of a more general copula dependence model in which the observed data likelihood cannot be2579

analytically evaluated pointwise, we must resort to a Data Augmentation scheme. In this case we2580

will be able to perform sampling via a general MCMC Metropolis-Hastings sampler. In particular2581

we will consider automating such a sampler using an adaptive MCMC scheme.2582

4.5.0.1. Adaptive Metropolis within Data-Augmented Copula PIC Models. This section presents2583

the adaptive proposal we use to sample the parameters and the auxiliary variables. The advantage2584

of an adaptive MCMC mechanism is that it automates the proposal design through consideration2585

of a proposal distribution that learns the regions in which the posterior distribution for the static2586

model parameters and auxiliary data has most mass. As such, the probability of acceptance under2587

such an on-line adaptive proposal is likely to improve as the iterations progress and the generated2588

MCMC samples will ideally have reduced autocorrelation. In such cases the variance of Monte2589

Carlo estimators of integrals of smooth functionals formed from such samples will be reduced.2590

There are several classes of adaptive MCMC algorithms, see Roberts and Rosenthal. (2009).2591

The distinguishing feature of adaptive MCMC algorithms, compared to standard MCMC, is the2592

generation of the Markov chain via a sequence of transition kernels. Adaptive algorithms utilize2593

a combination of time or state inhomogeneous proposal kernels. Each proposal in the sequence is2594
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allowed to depend on the past history of the Markov chain generated, resulting in many possible2595

variants.2596

Haario et al. (2005b) develop an adaptive Metropolis algorithm with proposal covariance adapted2597

to the history of the Markov chain was developed. Andrieu and Thoms. (2008) is presenting a tu-2598

torial discussion of the proof of ergodicity of adaptive MCMC under simpler conditions known2599

as Diminishing Adaptation and Bounded Convergence. We note that when using inhomogeneous2600

Markov kernels it is particularly important to ensure that the generated Markov chain is ergodic,2601

with the appropriate stationary distribution. Two conditions ensuring ergodicity of adaptive MCMC2602

are known as Diminishing Adaptation and Bounded Convergence. These two conditions are sum-2603

marised by the following two results for generic Adaptive MCMC strategies on a parameter vector2604

θ. As in Roberts and Rosenthal. (2009), we assume that each fixed MCMC kernel Qγ , in the2605

sequence of adaptions, has stationary distribution P (·) which corresponds to the marginal poste-2606

rior of the static parameters. Define the convergence time for kernel Qγ when starting from a state2607

θ ∈ E, asMϵ (θ, γ) = inf{s ≥ 1 : ∥Qs
γ (θ; ·)−P (·) ∥ ≤ ϵ. Under these assumptions, they give the2608

following two conditions which are sufficient to guarantee that the sampler produces draws from2609

the posterior distribution as the number of iterates tend to infinity. The two sufficient conditions2610

are:2611

• Diminishing Adaptation: limn→∞supθ∈E∥QΓs+1 (θ, ·)−QΓs (θ, ·) ∥tv = 0 in probability.2612

Note, Γs are random indices.2613

• Bounded Convergence: For ϵ > 0, the sequence {Mϵ (θ,Γj)}∞j=0 is bounded in probabil-2614

ity.2615

The sampler converges asymptotically in two senses,2616

• Asymptotic convergence: limj→∞∥Law (θ)− P (θ) ∥tv = 0 in probability.2617

• Weak Law of Large Numbers: limj→∞
1
j

∑j
i=1 ϕ (θ) =

∫
ϕ(θ)P (dθ) for all bounded ϕ :2618

E → R.2619

In general, it is non-trivial to develop adaption schemes which can be verified to satisfy these2620

two conditions. In this chapter we use the adaptive MCMC algorithm to learn the proposal distribu-2621

tion for the static parameters in our posterior Φ. In particular we work with an adaptive Metropolis2622

algorithm utilizing a mixture proposal kernel known to satisfy these two ergodicity conditions for2623

unbounded state spaces and general classes of target posterior distribution, see Roberts and Rosen-2624

thal. (2009) for details.2625

4.5.0.2. Euclidean and Riemann-Manifold Adaptive Metropolis within Data-Augmented Cop-

ula PIC Models. This section presents the specific details of the Adaptive Metropolis algorithm

that we combine with Data-Augmentation to obtain an MCMC sampler for the Data Augmented
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Mixture Copula PIC Model proposed. This involves specifying the details of the proposal distri-

bution in the AdMCMC algorithm which samples a new proposed update vector Υ∗ and matrix Σ̃∗

from an existing Markov chain state Υ with

Υ =
[
Φ,Ψ, s20:J , t

2
0:J ,ρ, X̃

P

1,aux, . . . , X̃
P

J,aux, X̃
I

1,aux . . . , X̃
I

J,aux

]
and matrix Σ̃. At the j-th iteration of the Markov chain we have existing state Υ(j−1) and Σ̃(j−1)2626

which is used to construct the proposal distribution q
(
Υ(j−1),Υ∗) q (Σ̃(j−1), Σ̃∗

)
. The choices2627

we make for the two proposals will involve a novel development of a new adaptive proposal for2628

positive definite matrices, required for the covariance matrix Σ̃ should we choose not to specify it2629

as diagonal.2630

Euclidean Space Adaptive Metropolis for Static Parameters:2631

We first detail the proposal for updating Υ using a mixture of multivariate Gaussian distributions2632

as specified for an Adaptive Metropolis algorithm which involves sampling from the proposal2633

q
(
Υ(t−1), ·

)
= w1N

(
Υ;Υ(t−1),

(2.38)2

d
Cov

({
Υ(j)

}
0≤j≤t−1

))
+(1− w1)N

(
Υ;Υ(t−1),

(0.1)2

d
Id,d

)
,

(4.5.1)

where we define the sample covariance for Markov chain past history by Cov
({

Υ(j)
}
0≤j≤t−1

)
2634

and we note the following recursive evaluation, which significantly aids in algorithmic computa-2635

tional cost reduction2636

E
({

Υ(j)
}
0≤j≤t

)
= E

({
Υ(j)

}
0≤j≤t−2

)
+

1

t

(
Υ(t−1) − E

({
Υ(j)

}
0≤j≤t−1

))
Cov

({
Υ(j)

}
0≤j≤t

)
=

1

t+ 1

((
Υ(t−1) − E

({
Υ(j)

}
0≤j≤t

))(
Υ(t−1) − E

({
Υ(j)

}
0≤j≤t

))′
− Cov

({
Υ(j)

}
0≤j≤t−1

))
+ Cov

({
Υ(j)

}
0≤j≤t−1

)
.

(4.5.2)

The theoretical motivation for the recommended choices of scale factors 2.38, 0.1 and dimension2637

d are provided in Rosenthal et al. (2008).2638

Riemannian Manifold Adaptive Metropolis for Covariance Matrices:2639

Next we develop a novel proposal distribution for the sampling of the covariance matrix Σ̃ ∈2640

Sym+(d) in an adaptive MCMC proposal, restricted to the Riemann manifold of symmetric, pos-2641

tive definite (d× d) matrices, denoted by the space Sym+(d).2642

Remarks 4.5.1. First, we note two properties of the marginal posterior p
(
Σ̃
∣∣∣ {X̃P

i,obs, X̃
I
i,obs

}
0≤i≤J

)
:2643

its distribution is restricted to the Riemann-manifold of symmetric positive definite matrices, but in2644

general will not be Inverse-Wishart; second, the Markov chain samples drawn from this marginal2645

distribution at iteration t,
{
Σ̃(s)

}
0≤s≤t

, are not independent. The consequence of this is that we2646
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cannot simply apply the property of closure under convolution of independent Wishart distributed2647

random matrices to find a suitable proposal.2648

Therefore, we will adopt a strategy to perform adaptive moment matching of a distribution2649

with support Sym+(d). We detail one possibility involving an inverse Wishart distribution fitted2650

to the sample mean of the marginal posterior for the covariance. We note that future work could2651

also consider specifying a distribution on the superset of the Riemannian manifold of symmetric2652

positive definite matrices, given by the Riemannian manifold of symmetric matrices Sym+(d) ⊂2653

Sym(d).2654

Adaptive Metropolis inverse Wishart Mixture: We note that one way to achieve this is a2655

mixture of inverse Wishart distributions given by2656

q
(
Σ̃(t−1), ·

)
= w1IW

(
Σ̃; Λadap

t

({
Σ̃(s)

}
0≤s≤t−1

)
, p

)
+ (1− w1) IW

(
Σ̃; Λ, p

)
. (4.5.3)

Here, the adaptive proposal mixture component is specified through fixing the degrees of free-2657

dom p and then selecting Λadap
t with respect to the sample average of the covariance matrices2658 {

Σ̃(s)
}

0≤s≤t−1
which are samples from the matrix-variate marginal posterior in the Markov chain,2659

thereby adapting the proposal to the Markov chain history. To perform the moment matching2660

(Equation (4.5.4)), we note that we need to ensure that the sample average considered is restricted2661

to the Riemann-manifold of positive definite matrices.2662

Λadap
t

({
Σ̃(s)

}
0≤s≤t−1

)
=
̂̃
Σ

(t−1) (
p− dim(Σ̃)− 1

)
. (4.5.4)

This is satisfied through the choice of the estimator2663

̂̃
Σ

(t−1)

=
1

t− 1

t−1∑
s=1

Σ̃(s). (4.5.5)

To see this we observe that since we only form positive linear combinations of matrices on this2664

manifold, with a scaling, such linear combinations will always remain on the manifold Sym+(d).2665

4.6. Real Data Analysis2666

To illustrate the proposed models and compare with existing models and estimation methods2667

in the actuarial literature we consider, as in Merz and Wuthrich. (2010), the example presented in2668

Dahms (2008) and Dahms et al. (2009) (Tables 10 and 11). As in the second analysis framework2669

in Merz and Wuthrich. (2010), we treat the claim development factors, the likelihood dependence2670

parameters and the hyperparameters on the claim development factor priors as parameters which2671

we incorporate into the posterior inference.2672
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We present two sets of results, the first studies the performance of the adaptive Markov chain2673

Monte Carlo algorithms developed for the estimation and inference of the posterior distributions2674

for the PIC-Copula models for Gaussian Copula (Models III) and the Data-Augmented-Mixture-2675

Copula PIC (Models IV). The second stage of results assesses the estimation of predictive distri-2676

butions and dependence features of the PIC claims reserving models compared to the independent2677

PIC Model, the payment only model and the incurred only models. In particular, we focuss anal-2678

ysis on the data sets studied in Merz and Wuthrich. (2010) for comparison of the influence of de-2679

pendence features in PIC models versus independence assumptions when performing PIC claims2680

reserving.2681

Convergence Analysis: In all the Markov chain Monte Carlo simulations, for each model (pay-2682

ment, payment-incurred Gaussian copula Model III; and Data-Augmented hierarchical Archemdean2683

mixture copula Model IV), we carried out convergence diagnostics. This included the Gelman-2684

Rubin R-statistics (all less than 1.5), the ACF plots for each parameter were checked to ensure all2685

parameters had ACF’s which were less than 10% by lag 20. Then the first 20% of samples were2686

discarded as burnin and the remaining samples were used in inference results presented below.2687

4.6.1. Results: Euclidean and Riemann-Manifold Adaptive Metropolis for hierarchical2688

Bayesian Copula PIC Models. In the simualtion results, we consider a block Gibbs sampler with2689

the following three stages performed at each iteration of the adaptive Metropolis-within-Gibbs2690

sampler for the PIC Model III and Model IV:2691

2692

Stage 1: Perform exact sampling of the development factors and their hyperparameters2693

under the conjugacy results developed.2694

2695

Stage 2: Perform Euclidean space Adaptive Metropolis updates of the Augmented Data2696

variables using proposal in Equation (4.5.1).2697

2698

Stage 3: (Gaussian Copula Model III) - Perform Riemannian space Adaptive Metrop-2699

olis updates of the covariance matrix in the Gaussian copula. Note, we consider the2700

constrained specifications presented in the “Dependent Lag Years” model specification2701

in Section 4.3.2, Equation (4.3.23). Under this hierarchical Bayesian model, the joint2702

covariance between all observed payment and incurred loss data under the dependent de-2703

velopment years assumption, satisfies a telescoping diagonal block size form covariance2704

matrix structure. Hence, the sampling of this structure can be performed blockwise on2705

each covariance sub-block;2706

(Mixture Clayton-Gumbel Copula Model IV) - Perform Euclidean space Adaptive Me-2707

tropolis updates of the mixture copula parameters.2708
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4.6.1.1. Hierarchical Bayesian Gaussian Copula (telescoping block covariance) PIC (Model2709

III). This section presents the estimation results for the Gaussian Copula based PIC models (Model2710

III) on the real data. Figure 4.2 summarizes the dependence structure by a heatmap for the pos-2711

terior distribution of the Gaussian copula covariance matrix. As mentioned in the introduction,2712

the telescoping block covariance refers to the fact that the covariance structure is reducing in rank2713

by 1 on each diagonal block for the payment data and then the incurred data. This model has the2714

joint covariance between all observed payment and incurred loss data under the assumption that2715

the development years are dependent, satisfying a telescoping diagonal block size form covariance2716

matrix structure. Summarising the information from such posterior samples for distributions of2717

covariance matrices is non-trivial as discussed in Tokuda et al. (2011), where they develop a four2718

layer approach. Our article adopts aspects of the ideas proposed in Tokuda et al. (2011) to interpret2719

the features of the posterior distribution samples for the dependence structures.2720

The posterior mean for estimated PIC covariance structure is obtained by using Monte Carlo2721

samples from the Riemann-Manifold Adaptive Metropolis sampler and given by the estimator,2722

E
[
Σ̃|P , I

]
=

1

S

S∑
s=1

{(
J⊕

i=0

ΣP
i

)
⊕

(
J⊕

i=0

ΣI
i

)}(s)

, (4.6.1)

where
{(⊕J

i=0 Σ
P
0

)
⊕
(⊕J

i=0 Σ
I
0

)}(s)

is the s-th sample of the J(J − 1)× J(J − 1) covariance2723

matrix. The estimated posterior mean covariance matrix is reported in a heatmap for the correlation2724

matrix in Figure 4.2. In Figure 4.2, Top panel: Heatmap of the posterior distribution for the2725

Gaussian copula covariance matrix (100 × 100), summarised by the heat map for the mean of2726

correlation structure using samples from the Riemannian Manifold Adaptive Metropolis sampler2727

under restriction to a telescoping diagonal block form. Bottom Left Panel: Heatmap for the2728

posterior distribution sub-block covariance matrices ΣP
0 and ΣP

1 converted to correlation matrices.2729

Bottom Right Panel: Heatmap for the posterior distribution sub-block covariance matrices ΣI
02730

and ΣI
1 converted to correlation matrices. The color key is given at the top left. In addition, we2731

present examples based on posterior mean covariance for covariance sub-blocks p
(
ΣP

4 |P , I
)

and2732

then for p
(
ΣI

4|P , I
)
, where ΣP

4 ∈ SP+(6) and ΣI
4 ∈ SP+(5), again converted to heatmaps of the2733

correlation. We see that although the priors selected for the dependence features in Model III in all2734

cases favoured independence, since the scale matrices were all diagonal i.e. ΛP
5 = I6 and ΛI

4 = I5,2735

the resulting summaries of the marginal posteriors of the covariances clearly indicate non-trivial2736

dependence patterns in the development years within the payments data and the incurred loss data.2737

This is observed throughout each sub-block covariance matrix.2738

Table 4.9 provides a second summary of the posterior for the covariance matrix which further2739

demonstrates features of the dependence properties in the payment and incurred data per accident2740

year and involves the estimates of the largest eigenvalue of each block diagonal matrix for the2741
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FIGURE 4.2. Heatmap of the posterior distribution

payment and incurred data as summary statistics. These estimates are given by2742

λ̂
(s)
i = argmax

(
det(Σ

(s)
i − λI) = 0

)
. (4.6.2)

The largest eigenvalue provides information on the posterior distribution of the magnitude of the2743

first principal component of each development year, decomposed by accident year. That is, we can2744

quantify in the PIC model, by accident year, the proportion of residual variation in the log payments2745

for accident year i currently unexplained by the development factors Φ0:J−i, which were jointly2746

estimated in the PIC model and assumed constant accross each accident year (i.e. constant per2747

development year) for parsimony. We can also repeat this for the incurred loss data. Suppose that a2748

principal component analysis is performed, decomposing the variation in the payment and incurred2749

data for each accident year i with respect to the variation unexplained by the development factors2750

in the PIC model. Then, up to proportionality, the distribution of the eigenvalues corresponds to2751

the proportion of contribution from the leading eigenvector (principal component). When this is2752

coupled with the fact that we can also easily obtain samples from the marginal posterior distribution2753

of the leading eigenvector of the covariance matrix for the i-th accident year’s payment of incurred2754

loss data in the PIC model, then we get complete information per accident year on the ability of2755
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the development factors in the PIC model to explain variation in the observed loss data. Table2756

4.9 summarises the results for the average PCA weight (largest eigenvalue) and average posterior2757

eigenvector.2758

Tokuda et al. (2011) develops a framework which formalizes an approach to the summary2759

of dependence structures. For the running example of results that we present for distributions2760

p
(
ΣP

4 |P , I
)

and p
(
ΣI

4|P , I
)
, under such an approach the third and fourth layers of summary are2761

presented in Figure 4.3. Figure 4.3 represents the Heatmaps for the block diagonal covariance2762

matricesΣP
4 (2 × 2 sub-plot 1) and ΣI

4 (2 × 2 sub-plot 2). These are obtained using samples from2763

the Riemannian Manifold Adaptive Metropolis sampler. Samples from the Posterior distribution of2764

the telescoping diagonal block size form covariance matrix structures of the Gaussian copula un-2765

der the hierarchical Bayesian model which has the joint covariance between all observed payment2766

and incurred loss data under the dependent development years. Each set of 4 × 4 panels, starting2767

from the top, summarizes the posterior distributions for the covariance matrices for s ∈ {P, I}2768

according to: Top Left Panel: contour map of posterior samples log [Σs
4]1,1 vs log [Σs

4]5,5. Top2769

Right Panel: contour map of posterior samples log [Σs
4]1,1 vs [Σs

4]1,5. Bottom Left Panel: kernel2770

density estimator of the posterior distribution of the trace of the covariance matrix using samples2771

{log tr (Σs
4)}. Bottom Right Panel: scatter plot of posterior samples of the first, second and third2772

largest eigenvalues scaled by total of the eigen valuse - (PCA weights - for linear combinations2773

of the development factors when explaining variation in observed payment and incurred data for a2774

given accident year). This involves the presentation of contour maps of these marginal posteriors2775

that are constructed using adaptive MCMC samples of these matrices.2776

In Figure 4.4, the development factors for payment and incurred data marginal posterior dis-2777

tributions are presented along with the posteriors of the hyperparameters for the Gaussian Copula2778

based PIC models (Model III). The Boxplot summaries of the marginal posterior distributions ob-2779

tained using samples from the Riemannian Manifold Adaptive Metropolis sampler. Samples from2780

the Posterior distribution under a telescoping diagonal block size form covariance matrix struc-2781

tures of the Gaussian copula under the hierarchical Bayesian model which has the joint covariance2782

between all observed payment and incurred loss data under the dependent development years. Top2783

Left Panel: box plots of marginal posterior distributions for p (Φi|P , I). Top Right Panel: box2784

plots of marginal posterior distributions for p (Ψi|P , I). Bottom Left Panel: box plots of marginal2785

posterior distributions for p (si|P , I). Bottom Right Panel: box plots of marginal posterior distri-2786

butions for p (ti|P , I). Finally, we also compare the estimated posterior marginal distributions of2787

the development factors for the payment and incurred loss triangles for the models: payment only2788

model; the incurred only model; the Gaussian Copula (Model III) dependent model; the PIC [Full]2789

independent model and the PIC [Partial] independent model of Merz and Wuthrich. (2010). The2790

results of this comparison include the posterior mean estimates of E [Φi|P , I] and E [Ψi|P , I], for2791

all i ∈ {0, 1, . . . , J} and the posterior quantiles for left and right tails as measured by the fifth and2792
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ninety-fifth percentiles, given in Table 4.1. We note that the results in this section for the Gaussian2793

copula models are obtained using the log ratio observational data and the restults for the Mixture2794

Archimedian copula model are more conveniently obtained using the log observations (not ratio2795

data).2796

It is also worth noting other approaches that can be adopted in the case of the Gaussian cop-2797

ula model. One could also included a data-augmentation stage in the analysis as was utilised in2798

the Mixture Archimedian copula example. In addition, the covariance matrices could have been2799

specified under different structures with more or less parsimony. The examples utilised in this sec-2800

tion were those which provided a reasonable trade-off between parsimonious model specification,2801

while allowing a meaningful decomposition of the results.2802

The results of the comparison between the Gaussian copula PIC model and the independent2803

PIC model illustrated that whilst the posterior marginal mean development factor estimates are2804

not affected by the dependence feature included, the marginal posterior shape is affected. This is2805

reflected by the comparison of the posterior confidence intervals for the Gaussian copula PIC model2806

when compared to the payment or incurred individual models where there is a significant difference2807

present in the shapes of the marginal posterior. It is expected that this will have implications for2808

the estimation of reserves using these different will be quantified in the next section.2809

4.6.1.2. Data-Augmented hierarchical Bayesian Mixture-Archimedian Copula PIC (Model IV).2810

This section presents the estimation results for the mixture of Clayton and Gumbel Copula based2811

PIC models (Model IV) on the real data are presented in this section. Figure 4.5 presents a sum-2812

mary of the mixture copula dependence structure obtained from posterior samples of the copula2813

parameters under the hierarchical Bayesian model. More specifically, copula Dependence Param-2814

eter Posterior distributions estimated under the Data-Augmented Mixture Copula PIC Model IV. A2815

mixture of Archimedean copula models is considered, with Clayton and Gumbel copula choices,2816

allow for possible asymmetry in the tail dependence over development years.We chose uniforma-2817

tive uniform priors U [0, 20] for the copula parameters. Top Left Panel: Contour map of posterior2818

estimated mixture copula dependence distribution between development years over paid and in-2819

curred loss data, with homogeneous dependence assumptions over accident years (estimated from2820

posterior mean of ρMMSE
C and ρMMSE

G . Top Right Panel: Surface plot of posterior estimated2821

mixture copula dependence distribution between development years over paid and incurred loss2822

data, with homogeneous dependence assumptions over accident years (estimated from posterior2823

mean of ρMMSE
C and ρMMSE

G . Bottom Left Panel: Scatter plot of posterior samples used to esti-2824

mate Kendall’s tau rank correlation versus copula parameter for the Clayton mixture component.2825

Bottom Right Panel: Scatter plot of posterior samples used to estimate Kendall’s tau rank corre-2826

lation versus copula parameter for the Gumbel mixture component. The results in this section are2827
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FIGURE 4.3. Heatmaps for the block diagonal covariance matrices

obtained using the log observational data, not ratio data. The figures summarise succinctly the esti-2828

mated posterior dependence structure for the hierarchical Bayesian mixture Copula model, through2829

plots of the dependence structure as captured by the estimatd mixture copula distribution, the scat-2830

ter plots of copula parameter for the lower tail and rank correlation (Kendall’s tau) and the upper2831

tail copula parameter versus rank correlation. These results clearly demonstrate posterior evidence2832

for non-trivial tail dependence features in the payment and incurred data, as well as potential for2833

asymmetry in the upper and lower tail dependence. Note, uniformative prior choices were made2834

on the copula parameters with uniform priors over [0, 50] and [1, 50] respectively, indicating these2835

estimated copula parameters are data driven results.2836

Figure 4.6 presents the development factors for payment and incurred data marginal posterior2837

distributions along with the hyperparameter marginal posteriors for the Data-Augmented Mixture2838

Copula based PIC models (Model IV). It presents the boxplots of the marginal posterior distribu-2839

tions of the development factors and hyperparameters. Top Left Panel: box plots of marginal pos-2840

terior distributions for p (Φi|P , I). Top Right Panel: box plots of marginal posterior distributions2841

for p (Ψi|P , I). Bottom Left Panel: box plots of marginal posterior distributions for p (si|P , I).2842

Bottom Right Panel: box plots of marginal posterior distributions for p (ti|P , I).2843
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FIGURE 4.4. Boxplot of the marginal posterior distributions
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FIGURE 4.6. Boxplots of the marginal posterior distributions of the development

factors and hyperparameters.
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4.7. Comparison of PIC reserving with Gaussian Copula PIC and Mixture Archimedian2844

Copula PIC Models2845

This section discuss the effect of modelling the dependence structures on the reserving esti-

mates. First we note two important details in calculating the reserves. We need to be able to draw

samples from the predictive distributions for the payment and incurred data given below, for each

accident year i, using

p (Pi,J |P , I) =
∫
p (Pi,J |Pi,1:J−i,Θ) p (Θ|P , I) dΘ and p (Ii,J |P , I) =

∫
p (Ii,J |Ii,1:J−i,Θ) p (Θ|P , I) dΘ.

In general it is not possible to solve these integrals analytically. Howerver, for the Gaussian cop-2846

ula models developed in this chapter, under the results in Lemma 4.3.3, one adopt the results of2847

Merz and Wuthrich. (2010)[Theorem 2.4] to obtain analytic Gaussian predictive distributions. Al-2848

ternatively, the predicitive distributions can be estimated as described in ?, Section 3.3. Although2849

the results in Table 4.1 demonstrate that the incorporation of the dependence structures does not2850

significantly alter the posterior mean of the development factors for the payment and incurred loss2851

data, it is clearly possible for the predictive distribution to be altered, since the shape of the poste-2852

rior distribution is altered by the dependence features. Second, regarding the hierarchical mixture2853

Archimedian copula model, it does not admit an analytic solution for the predictive distribution.2854

This does not matter if a data augmentation stage is set up in the joint posterior distribution to2855

sample cumulative payments, since then we can use the MCMC sampler output for the ultimate2856

cumulative payment and incurred losses in each accident year.2857

Finally, we also note that a simple Monte Carlo based approximation for the ultimate claim2858

can be constructed. Take the samples from the MCMC output for the PIC model of interest (sam-2859

pled from the complete PIC model with dependence features present) and then utilise these sam-2860

ples to construct a Laplace approximation to the predictive observation distribution for example2861

p (Pi,J |Pi,1:J−i,Θ) which involves a normal approximation around the MAP or locally around2862

each Monte carlo sample for the development factors, with precision given by the sampled ob-2863

servation covariance structure. Though this is not required, as we have shown for the Gaussian2864

copula models independence models, it may be useful for alternative copula based models with2865

simple data-augmentation approaches. In addition a second alternative would be to utilise in the2866

predictive distribution the marginal distributions.2867

Figure 4.7 presents the log posterior predictive distribution for the ultimate total claim given by2868

the predictive distribution for the log of the cumulative payment over each accident year
∑J

i=0 Pi,J2869

for the full Bayesain models which incorporate priors on observation error, development factors2870

and hyperpriors for precision of the development factors. Ultimate Bayesian predictive distribu-2871

tions for log payment data from the payment only predictive distribution, the Full Independent PIC2872
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model, and the hierarchical PIC Mixture Copula model via Data Augmentation predictive distri-2873

bution. Left Panel: Posterior predictive distribution box plots from samples. Right Panel: Kernel2874

density estimates of the predictive distributions. We see that all three models are in good agree-2875

ment with each other with the dependence parameters affecting the variance and tail behaviour of2876

the distributions.

15.5 16 16.5 17 17.5 18
Log Ultimate Total Payments

14 15 16 17 18 19 20

 

PIC Gaussian Copula (Full)
PIC Independent (Full)
Payment Only (Full)
PIC Mix Copula (Full)

FIGURE 4.7. Boxplots of the predictive distributions obtained from the MCMC samples

2877

Next we consider the distributions of the outstanding loss liabilities estimated using the S sam-2878

ples from the MCMC obtained for the posterior PIC model. We denoted these by random variables2879 {
R(P , I)(s)

}
s=1:S

whereR(P , I)(s) = Pi,J−Pi,J−i and depending on whether payment, incurred,2880

or both data is present we denoted by R(P )(s), R(I)(s) and R(P , I)(s) respectively. Figure 4.82881

presents the MCMC estimated claims reserve marginal posterior predictive distributions for each2882

accident year per model developed. It is the boxplots of log ultimate Bayesian predictive reserve2883

distributions for payment data per accident year, compared to (Partial) PIC Independent posterior2884

mean estimates from Merz and Wuthrich. (2010) (karge unfilled black circles). Top Row: the2885

(Full) hierarchical PIC Mixture Copula model via Data Augmentation; Second Row from Top:2886

the (Full) hierarchical PIC Gaussian Copula model; Third Row from Top: the (Full) Independent2887

PIC model; Bottom Row: the (Full) payment Only model.2888

We compared our results to those obtained in Merz and Wuthrich. (2010) and find good agree-2889

ment between the mean reserve per accident year and each proposed model. In addition, we note2890

the possible differences between the distributions can be attributed to the utilisation of the full2891

versus partial hierarchical Bayesian models in this paper and the different dependence structures2892

considered. Additionally, we note that further analysis on comparisons to existing models in the2893
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FIGURE 4.8. Boxplots of log ultimate Bayesian predictive reserve distributions for

payment data per accident year

literature can be obained for the models of ?, Dahms (2008) and Quarg and Mack (2004) for this2894

data analysis in Merz and Wuthrich. (2010) [Table 4] and in the spreadsheet provided by Professor2895

Mario Wuethrich at URL1.2896

4.8. Conclusions2897

This chapter extends the class of PIC models to combine the two different channels of infor-2898

mation as proposed in Merz and Wuthrich. (2010) by introducing several novel statistical models2899

for the dependence features present within and between the payment and incurred loss data. This2900

allows us to obtain a unified ultimate loss prediction which incorporates the potential for general2901

dependence features. To achieve this we developed full hierarchical Bayesian models which in-2902

corporate several different potential forms of dependence, including generalized covariance matrix2903

structure priors based on inverse Wishart distributions and conditional Bayesian conjugacy in the2904

PIC independent log-normal model. This forms a general class of Gaussian copula models which2905

extends the approach of Happ and Wuthrich (2011).2906

Second, we develop a class of hierarchical mixture Archimedian copula models to capture po-2907

tential for tail dependence in the payment and incurred loss data, again developing and demonstrat-2908

ing how to appropriately construct a full Bayesian model incorporating hyperpriors. In this regard,2909

we also develop a class of models in which data-augmentation is incorporated to both overcome2910

challenging marginal likelihood evaluations required for the MCMC methodology to sample from2911

1URL:http://www.math.ethz.ch/~wueth/claims_reserving3.html
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the PIC Bayesian models. This had the additional feature that it also allowed for joint Bayesian2912

inference of the reserves as part of the posterior inference.2913

Finally, to perform inference on these approaches we developed an adaptive Markov chain2914

Monte Carlo sampling methodology incorporating novel adaptive Riemann-manifold proposals2915

restricted to manifold spaces (postive definite symmetric matrices) to sample efficiently the co-2916

variance matrices in the posterior marginal for the Gaussian copula dependence. We make these2917

advanced MCMC accessible to the actuarial audience to address challenging Bayesian inference2918

problems in Claims Reserving modelling.2919

The consequence of these models for actuaries is that a new extended suite of flexible depen-2920

dence structures have been incorporated into the recently proposed PIC models. These can now be2921

extended and compared to existing chain ladder methods. We perform an analysis on real payment2922

and incurred loss data discussed in Merz and Wuthrich. (2010) and compare our models with the2923

analysis for the independent PIC model (partial) and the (full) Bayesian PIC model as well as sev-2924

eral different dependent models and the payment only model. Furthermore, we provide reference2925

on further comparisons to the alternative models of ?, Dahms (2008) and Quarg and Mack (2004)2926

for this data.2927
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Posterior Covariance Matrix for payments and incurred Loss Gaussian Copula

Sub-

Block

Ave. λ̂(s)i Std.Dev

λ̂
(s)
i

[Q0.05;Q0.95]

for λ̂(s)i

Ave. Principal Eigen Vector v̂

ΣP
0 2.52 13.15 [0.15;11.09][0.10,-0.12,-0.07,-0.03,-0.05,-0.03,0.01,-0.06,-

0.03]

ΣP
1 1.97 13.92 [0.15;8.30] [0.05,-0.08,-0.04,-0.02,-0.01,-0.01,-0.02,-

0.01,-0.01]

ΣP
2 0.94 8.48 [0.14;3.19] [0.06,-0.10,-0.06,-0.02,-0.02,-0.01,-1.1e-3,-

0.01]

ΣP
3 0.75 6.38 [0.14;1.92] [0.08,-0.12,-0.05,-0.03,-0.01,-6.9e-5,-2.3e-3]

ΣP
4 0.76 6.81 [0.13;0.25] [0.12,-0.13,-0.06,-0.03,-0.01,0.01]

ΣP
5 0.70 5.93 [0.12;0.23] [0.14,-0.15,-0.08,-0.01,0.01]

ΣP
6 1.11 9.90 [0.12;0.24] [0.21,-0.20,-0.07,0.03]

ΣP
7 2.16 18.07 [0.10;0.26] [0.27,-0.25,0.07]

ΣP
8 5.44 34.67 [0.08;20.92][-0.47,0.43]

ΣP
9 1.95 10.28 [0.06;11.56]Not Applicable

ΣI
0 1.69 4.78 [0.13;6.57] [0.10,-0.12,-0.07,-0.03,-0.05,-0.03,0.01,-0.06,-

0.03]

ΣI
1 1.08 3.66 [0.13;4.93] [0.03,-0.12,-0.05,-0.03,-0.01,2.4e-3,0.01,0.01]

ΣI
2 0.80 3.26 [0.12;3.76] [0.09,-0.12,-0.06,-0.02,-0.01,3.2e-3,-0.01]

ΣI
3 0.66 3.15 [0.11;3.27] [0.10,-0.12,-0.07,-0.03,-0.02,1.5e-3]

ΣI
4 0.65 3.97 [0.10;3.23] [0.15,-0.15,-0.07,-0.02,0.02,]

ΣI
5 1.00 5.02 [0.09;5.62] [6.6e-12,-6.6e-12,-2.9e-12,-1.0e-12,8.5e-13]

ΣI
6 1.15 7.52 [0.08;6.31] [0.31,-0.24,0.07]

ΣI
7 5.26 25.29 [0.06;32.87][-0.50,0.42]

ΣI
8 1.03 3.82 [0.04;6.30] Not Applicable
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Posterior Marginal Distributions for Development Factors

Factor PIC Gaussian Copula (Full) PIC Independent (Full) payment or incurred

only (Full)

Merz and Wuthrich.

(2010) PIC Indepen-

dent (Partial)

PIC Mixture Clayton-

Gumbel Copula (Full)

Post.Ave. [Q0.05;Q0.95] Post.Ave. [Q0.05;Q0.95]Post.Ave. [Q0.05;Q0.95] Post.Ave. Post.Ave. [Q0.05;Q0.95]

Φ0 13.79 [13.55;14.03] 14.51 [13.19;15.01] 13.77 [13.68;13.86] 13.78 13.72 [13.63;15.96]

Φ1 0.21 [-0.16;0.58] 0.18 [0.05;0.29] 0.20 [0.12;0.27] 0.22 13.98 [13.64;15.05]

Φ2 0.25 [-0.25;0.77] 0.22 [0.08;0.34] 0.23 [0.14;0.31] 0.24 14.10 [12.80;15.14]

Φ3 0.18 [-0.44;0.81] 0.17 [0.04;0.30] 0.15 [0.06;0.24] 0.17 14.32 [13.92;15.29]

Φ4 0.15 [-0.55;0.86] 0.16 [0.02;0.30] 0.13 [0.04;0.23] 0.16 14.61 [14.32;15.60]

Φ5 0.13 [-0.63;0.91] 0.15 [1.9e-3;0.30] 0.12 [0.01;0.22] 0.14 14.71 [14.64;16.85]

Φ6 0.10 [-0.71;0.92] 0.12 [-0.04;0.30] 0.08 [-0.04;0.20] 0.11 14.92 [14.82;16.50]

Φ7 0.07 [-0.79;0.93] 0.13 [-0.05;0.33] 0.05 [-0.09;0.19] 0.07 14.96 [14.90;16.44]

Φ8 0.08 [-0.81;0.97] 0.11 [-0.09;0.32] 0.05 [-0.12;0.22] 0.05 15.06 [14.97;17.59]

Φ9 0.04 [-0.88;0.98] 0.10 [-0.04;0.52] 0.02 [-0.19;0.24] 0.08 15.10 [13.26;15.86]

Ψ0 0.51 [-0.84;1.85] 0.45 [0.31;0.56] 0.52 [0.38;0.64] 0.50 13.73 [13.69;15.33]

Ψ1 -0.15 [-1.50;1.20] -0.08 [-0.11;0.12] 0.01 [-0.11;0.12] -0.15 14.01 [13.94;15.78]

Ψ2 -0.13 [-1.49;1.23] -0.09 [-0.15;0.20] 0.01 [-0.12;0.12] -0.14 14.30 [14.23;15.77]

Ψ3 -3.7e-2 [-1.39;1.34] 0.01 [-0.05;0.21] 0.01 [-0.13;0.13] -0.04 14.54 [14.43;16.46]

Ψ4 -1.7e-2 [-1.39;1.36] -0.01 [-0.06;0.23] -0.01 [-0.15;0.14] -0.02 14.67 [14.58;16.07]

Ψ5 -7.1e-3 [-1.39;1.38] 0.02 [-0.06;0.21] -0.06 [-0.17;0.15] -0.02 14.89 [14.72;18.10]

Ψ6 -7.3e-3 [-1.40;1.39] -0.02 [-0.05;0.30] -0.01 [-0.19;0.16] -0.01 14.82 [14.51;15.87]

Ψ7 -2.4e-3 [-1.40;1.39] 0.02 [-0.05;0.34] -0.06 [-0.40;0.22] -0.01 14.85 [14.62;16.05]

Ψ8 -2.0e-4 [-1.40;1.40] -0.01 [-0.02;0.52] -0.13 [-0.52;0.25] -0.01 15.07 [14.98;16.76]
TABLE 4.1. Results for Bayesian PIC model135



CHAPTER 5

Summary2937

This section summaries how each chapter in this thesis forms some of the main building blocks2938

in claims reserving.2939

5.1. Overview2940

In claims reserving or the valuation of insurance liabilities, the aim is to estimate the future2941

claims experience which is to be expected on the business written to date by the insurer. There are2942

several main building blocks involved.2943

As a first step, the estimation of central estimate represents the main part of insurance liabilities.2944

It is therefore important that central estimate are valued in a realistic and appropriate manner.2945

Chapter two of this thesis focuses on developing models for estimating central estimate for long2946

tail insurance business classes in which there is large degree of uncertainty in setting reserve. A2947

Bayesian approach is presented to model loss reserving data using the flexible GB2 distribution2948

and dynamic mean models. The proposed GB2 distribution provides a flexible probability density2949

function, which nests various distributions with light and heavy tails, to facilitate accurate loss2950

reserving in insurance applications. Furthermore, we also extend the mean functions to include2951

the state space and threshold models provides a dynamic approach to allow for irregular claims2952

behaviors and legislative change which may occur during the claims settlement period. Apart2953

from aggregated data, we have also considered models for individual claims data. The mixture of2954

GB2 distributions is proposed as a mean of modeling the unobserved heterogeneity which arises2955

from the incidence of very large claims in the loss reserving data. It is demonstrated through both2956

simulation study and forecasting that model parameters are estimated in high accuracy, and the2957

proposed models outperform the transitional models.2958

The second lays of insurance liabilities applied on top of central estimate is the risk margin. The2959

risk margin is an allowance for the variability of claims experience, and together with the central2960

estimate to produce a reasonable valuation of the insurance liabilities at a certain probability of2961

sufficiency level. In chapter three, we propose the use of quantile regression models to derive risk2962

margin and evaluate capital. We demonstrate quantile regression is capable of providing an accu-2963

rate estimation of risk margin and overview of implied capital based on the historical volatility of a2964
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general insurer’s loss portfolio. Two modeling frameworks are considered based around paramet-2965

ric and nonparametric quantile regression models which we contrast specifically in this insurance2966

setting.2967

In the parametric quantile regression setting, we consider several models including the flexible2968

generalized beta distribution family, asymmetric Laplace distribution and power Pareto distribu-2969

tion. These models are developed under a Bayesian regression framework via MCMC sampling2970

strategies. In the nonparametric quantile regression models, we adopted AL distribution as a proxy2971

and together with the parametric AL model in which we expressed the solution as a scale mixture2972

of uniform distributions to facilitate implementation. Then we extend the best performed model,2973

which is the AL model with ANOVA mean and variance functions, to estimate risk margin on two2974

real loss reserve data sets. The generalized AL model with a dynamic shape parameter p provides2975

us a mathematically consistent way of estimating risk margin. Overall, the results of our studies2976

indicate that this new risk margins framework offers considerable potential benefits for reserving2977

purpose.2978

From the perspective of good claims reserving practice, incorporating multiple sources of infor-2979

mation and quantifying the predictive variability is of more interest than forecasting outstanding2980

claims itself. The fact that we have two sources of information, namely the payment amount and2981

incurred cost, allows us to study the dependence among the two source of data in the determination2982

of a sufficient reserve and its associated variation. Examining two loss triangles jointly improves2983

the accuracy in the prediction of losses by borrowing information from each other. In chapter four,2984

we consider the class of recently developed family of hierarchical Bayesian Paid-Incurred-Claims2985

models that combine claims payments and incurred losses information into a coherent reserving2986

methodology. In particular, we extend the independent log-normal model by incorporating differ-2987

ent dependence structures using a Data-Augmented mixture Copula Paid-Incurred claims model.2988

The utility and influence of joint modelling of a run-off triangle with Paid data on the one2989

hand and Incurred claims on the other hand is demonstrated via both of independent models and2990

dependent models. We investigate two proposals for a dependence structure between Paid and In-2991

curred triangles, namely the lag-year telescoping block diagonal Gaussian Copula PIC data model2992

incorporating conjugacy via transformation and the data-augmented mixture Archimedean copula2993

dependent PIC data model. They are implemented via a class of adaptive Markov chain Monte2994

Carlo (MCMC) sampling algorithms. It is shown through our study that the proposed models2995

which incorporate two sources of information improve estimate accuracy in claims reserving.2996
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5.2. Executive summary2997

This thesis proposes a Bayesian dynamic reserving framework. The GB2 distribution and its2998

mixture representation with adynamic mean and variance are considered for the estimation of cen-2999

tral estimate for long tail insurance business class where tail behaviors can be largely different. We3000

applied the models to two real insurance data sets, one being aggregated claims triangle and the3001

other one being the individual claims data. It is shown through both simulation study and forecast-3002

ing that model parameters are estimated in high accuracy, and the proposed models outperform the3003

transitional models including Chain ladder and Gamma models.3004

Under this dynamic reserving framework, risk quantities, such as risk margin and VaR are es-3005

timated by quantile regression models. We compare the performance of both parametric and non-3006

parametric quantile regression models on two real insurance data sets. In the parametric frame-3007

work, we built five models, namely AL, PP, GB2, GG and gamma. The AL model provides the3008

best fit. We also investigate three different regression structures, namely ANCOVA, ANOVA and3009

Poisson-Tweedie regression. The ANOVA model performs the best in our empirical data study. It3010

is also demonstrated that the AL distribution with a dynamic shape parameter p provides a mathe-3011

matically mechanism to estimate risk margin scientifically.3012

Our proposed dynamic reserving models also consider modelling two sources of reserving data3013

sets jointly. We extend the class of PIC models as proposed in Merz and Wuthrich. (2010) by3014

introducing several novel statistical models for the dependence features present within and between3015

the payment and incurred loss data. This allows us to obtain a unified ultimate loss prediction which3016

incorporates the potential for general dependence features.3017

5.3. Further research3018

In spite of the substantial development of Bayeisan loss reserve models in this thesis, there are3019

still many unattended areas that are worthy of further consideration.3020

5.3.1. Extension to multivariate quantile regression. As many claim processes are jointly3021

correlated over time, it may be more efficiently modeled via a multivariate structure. Since there3022

are multiple sources of reserve data, the presence of dependency is inevitable. Depending on the3023

nature of the data, the dependence structure can be vastly different. Multivariate regression quantile3024

model can be considered to directly study the degree of tail interdependence among different types3025

of data as well as between accident and development years to derive risk measures, such as risk3026

margin and VaR. To capture these dependence structures explicitly, we can extend our models3027

to consider the joint dependence structure of the multivariate random vector conditional on the3028

covariate structure though a copula or other alternative approach.3029
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5.3.2. Estimation of diversification effect. In general insurance reserving practice, actuaries3030

quantify the unpaid losses and associated uncertainty for each line of business separately, and then3031

aggregate the reserves from multiple lines to determine the company-level reserve. The diversifi-3032

cation effect arises due to the association among different lines of business. It usually has a critical3033

implication for the company-level reserve, and hence it is critical to estimate it scientifically. Mul-3034

tivariate quantile regression can be extend to model different lines of business within a company3035

for setting company-level risk margin and reserve. Depending on the nature of the different lines3036

of businesses, the various sources of dependency may appear. The correlations correlations might3037

across development years as they develop over time or among accident years when natural disaster3038

happens and effect multiple lines of business. Some People have focussed on correlations over3039

calendar years based on the assumption that inflationary trends as a common unknown factor in-3040

ducing correlation. These correlations can be modeled by different considering different dependent3041

structures in the multivariate quantile regression model.3042

5.3.3. Comparison in methodologies of inference. In this thesis, we focus on the extensions3043

of loss reserve models to account for different risk measures under the Bayesian framework. An-3044

other area that is worthwhile to study is the inference methodology. Though using efficient MCMC3045

strategies improve the computation time, the sampling time could still be massive if the data size3046

is large and the model is highly complicated. As an alternative would be the maximum likelihood3047

method in the frequentist approach and the Expectation-maximization algorithm method which is3048

an iterative method for finding maximum likelihood or maximum a posteriori (MAP) estimates3049

of parameters in statistical models, where the model depends on unobserved latent variables. For3050

modelling individual claims data from large insurance portfolio, the maximum likelihood method3051

and Expectation-maximization algorithm method can be considered.3052
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1. Appendix A3053

Lemma 1.1 (Properties of Matrix-Variate Gaussian Distribution). A p × n random matrix X is3054

said to have a matrix variate Gaussian distribution with p × n mean matrix M and covariance3055

matrix Σ⊗Ψ where Σ and Ψ are in the spaces of symmetric positive definite matrices given by Σ ∈3056

SD+ (Rp) and Ψ ∈ SD+ (Rn) if the pn×1 dimensional random vector V ec (X ′) has a multivariate3057

normal distribution V ec (X ′) ∼ N (V ec(M ′),Σ⊗Ψ). Furthermore, ifX is distributed according3058

to matrix-variate Gaussian distribution X ∼ Np,n (M,Σ⊗Ψ) then the density is given by3059

fMVN
X (x;M,Σ,Ψ) =

exp
(
−1

2
tr
[
Σ−1 (X −M)′ Ψ−1 (X −M)

])
(2π)np/2 |Σ|n/2 |Ψ|p/2

(.1)

In addition the following properties are satisfied for a matrix-variate Guassian (see Gupta and3060

Nagar (2000) Chapter 2):3061

(1) If X ∼ Np,n (M,Σ⊗Ψ), then X ′ ∼ Nn,p (M
′,Ψ⊗ Σ)3062

(2) If X ∼ Np,n (M,Σ⊗Ψ), and partition X , M , Σ, and Ψ as3063

X =

X1r

X2r

 , and X =
[
X1c X2c

]
(.2)

with X1r the (m × n) sub-matrix, X2r the (p −m × n) sub-matrix, X1c the (p × t) sub-3064

matrix and X2c the (p× n− t) sub-matrix. With analogous partitions of the mean matrix3065

M1r, M2r, M1c and M2c and covariance matrices3066

Σ =

Σ11 Σ12

Σ21 Σ22

 , and Ψ =

Ψ11 Ψ12

Ψ21 Ψ22

 , (.3)

with Σ11 the (m×m) sub-matrix, Σ12 the (m×p−m) sub-matrix, Σ22 the (p−m×p−m)3067

sub-matrix, Ψ11 the (t × t) sub-matrix, Ψ22 the (n − t × n − t) sub-matrix. Then the3068

following properties are true3069

X1r ∼ Nm,n (M1r,Σ11 ⊗Ψ) and X1c ∼ Np,t (M1c,Σ⊗Ψ11)

X2r|X1r ∼ Np−m,n

(
M2r + Σ21Σ

−1
11 (X1r −M1r) ,Σ22.1 ⊗Ψ

)
X2c|X1c ∼ Np,n−t

(
M2c + (X1c −M1c)Ψ

−1
11 Ψ12,Σ⊗Ψ22.1

) (.4)

with Σ22.1 = Σ22 − Σ21Σ
−1
11 Σ12 and Ψ22.1 = Ψ22 −Ψ21Ψ

−1
11 Ψ12.3070

Lemma 1.2 (Properties of Matrix Variate Wishart Distributions). Suppose that the (p×p) positive3071

definite matrix Σ has an inverse Wishart distribution, with positive definite (p× p) scale matrix Λ,3072
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degrees of freedom parameter k > p− 1, and density3073

f(Σ|Λ, k) = |Λ|m/2 |Σ|−(k+p+1)/2 e−trace(ΛΣ−1)/2

2kp/2Γp(k/2)
, (.5)

where Γp(·) is the multivariate gamma function. The mean and mode of this distribution are given3074

respectively by3075

E [Σ|Λ, k] = 1

k − p− 1
Λ, and m (Σ) =

1

k + p+ 1
Λ. (.6)

Furthermore, the following marginal and conditional properties of the inverse Wishart distribution3076

are relevant. Consider a partition of the matrices Λ and Ψ as3077

Λ =

Λ11 Λ12

Λ21 Λ22

 , Σ =

Σ11 Σ12

Σ21 Σ22

 (.7)

with Λij and Σij denoting pi × pj matrices, then the following properties are satisfied (see Gupta3078

and Nagar (2000)[Chapter 3, Section 3.4]):3079

(1) The random sub-matrix Σ11 is independent of Σ−1
11 Σ123080

(2) The marginal distribution of any sub matrix on the diagonal of the matrix Σ is distributed3081

as inverse Wishart. For example, the sub random matrix Σ11 is as inverse Wishart with3082

Σ11 ∼ IW (Λ11, k − p2);3083

(3) The marginal distribution of sub random matrix Σ22·1 is inverse Wishart Σ22·1 ∼ IW (Λ22·1, k).3084

In Lemma 1.3 below we present details for the matrix-variate Inverse Wishart distribution, see3085

Gupta and Nagar (2000)[Chapter 3.4, Definition 3.4.1 and Theorem 3.4.1]3086

Lemma 1.3 (Properties of Matrix-Variate Inverse Wishart Distribution). A random p × p matrix3087

V = Σ−1 is distributed as Inverse Wishart, with degrees of freedom m and p× p parameter matrix3088

Ψ, denoted V ∼ IWp(m,Ψ) with density3089

f(Σ|Ψ,m) =
2−1/2(m−p−1)p|Ψ|1/2(m−p−1)

Γp [1/2(m− p− 1)] |V |1/2m
etr
(
−1/2V −1Ψ

)
, V > 0,Ψ > 0,m > 2p. (.8)

2. Appendix B3090

The family of Archimedean copula models has the following useful properties presented in3091

Lemma 2.1.3092

Lemma 2.1. Let C be an Archimedean copula with generator φ. Then according to ?, Lemma3093

4.1.2 and Theorem 4.1.5, the following properties hold:3094
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(1) C is an Archimedean copula if it can be reprsented by

C(u, v) = φ[−1] (φ(u) + φ(v))

where φ is the generator of this copula and is a continous, strictly decreasing function3095

from [0, 1] to [0,∞] such that φ(1) = 0 and φ[−1] is the pseudo inverse of φ.3096

(2) C is symmetric, C(u, v) = C(v, u) ∀(u, v) ∈ [0, 1]× [0, 1]3097

(3) C is associative, C(C(u, v), w) = C(u,C(v, w)) ∀(u, v, w) ∈ [0, 1]3.3098

(4) If c > 0 is any constant, then cφ is a generator of C3099

(5) According to Denuit et al. (2005, Definition 4.7.6), the extension of the Archimedean

copula family to n-dimensions is achieved by considering the strictly monotone generator

function φ such that φ : (0, 1] → R+ with φ(1) = 0, then the resulting Archimedean

copula can be expressed as,

C(u1, u2, . . . , un) = φ−1

(
n∑

i=1

φ(ui)

)
.

The members of the Archimedean copula family utilised in this manuscript are given below in3100

Lemma 2.2.3101

Lemma 2.2. From the results in ?, Section 4.3, Table 4.1 the distribution and density functions of

the Clayton copula are given respectively as:

CC(u1, ..., un) =

(
1− n+

n∑
i=1

u−ρC

i

)−1/ρC

, (.1)

cC(u1, ..., un) =

(
1− n+

n∑
i=1

(ui)
−ρC

)−n− 1

ρC n∏
i=1

(
(ui)

−ρC−1
(
(i− 1)ρC + 1

))
, (.2)

where ρC ∈ [0,∞) is the dependence parameter. The Clayton copula does not have upper tail

dependence. Its lower tail dependence is λL = 2−1/ρC . The distribution function of the Gumbel

copula is

CG(u1, ..., ud) = exp

−

[
d∑

i=1

(
− log(ui)

)ρG] 1

ρG

 , (.3)

where ρG ∈ [1,∞) is the dependence parameter. The Gumbel copula does not have lower tail

dependence. The upper tail dependence of the Gumbel copula is λU = 2− 21/ρ
G

. The distribution

function of the Frank copula is

CF (u1, ..., un) =
1

ρ
ln

(
1 +

∏n
i=1(e

ρFui − 1)

(eρF − 1)n−1

)
, (.4)
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where ρF ∈ R/{0} is the dependence parameter. The Frank copula does not have upper or

lower tail dependence. We note that the density functions for Gumbel and Frank does not admit

simple recursive expressions in terms of their density functions, but they can be obtained via partial

differentiation

c(u1, ..., un) =
∂n

∂u1, ...∂un
C(u1, ..., un). (.5)

3. Appendix C3102

Proof The proof of Lemma 4.4.1 requires one to demonstrate that the resulting distribution func-

tion

C̃ (u1, u2, . . . , un) =

∫
[0,u1]×[0,u2]×···×[0,un]

c̃ (x1, x2, . . . , xn) dx1:n

=
∑
i=1m

wi

∫
[0,u1]×[0,u2]×···×[0,un]

ci (x1, x2, . . . , xn) dx1:n

=
∑
i=1m

wiCi (u1, u2, . . . , un)

satisfies the two conditions of a n-variate copula distribution given in [Definition 2.10.6] of ?.

The first of these conditions requires that for every u = (u1, u2, . . . , un) ∈ [0, 1]n, one can show

that C̃ (u) = 0 if at least one coordinate of u is 0. Clearly since we have shown that C̃ (u) =∑
i=1m wiCi (u) and given each member Ci (u1, u2, . . . , un) ∈ An is define to be in the family of

Archimedean copulas each of which therefore satisfies this condition for all such points u, then it

is trivial to see that the probability weighted sum of such points also satisfies this first condition.

Secondly one must show that for every a and b in [0, 1]n, such that a ≤ b (i.e. ai < bi ∀i ∈

{1, 2, . . . , n}) the following condition on the volume for copula C̃ is satisfied, VC̃([a, b]) ≥ 0. As

in ? we adopt the notation for the n-box, [a, b], representing [a1, b1]× [a2, b2]× · · · × [an, bn] and

we define the n-box volume for copula distribution C̃ by [Definition 2.10.1, p.43] of ? giving

VC̃([a, b]) =
∑

sgn(c)C̃ (c)

= △b1
a1
△b2

a2
· · ·△bn

anC̃ (c)

where the domain DomC̃ of the mixture copula C̃ satisfies [a, b] ⊆ DomC̃. In addition we note

that this sum is understood to be taken over all vertices c of n-box [a, b] and sgn(c) = 1 if ck = ak

for an even number of k’s or sgn(c) = −1 if ck = ak for an odd number of k’s. Equivalently, we

consider △bk
ak
C̃ (t) = C̃ (t1, t2, . . . , tk−1, bk, tk+1, . . . , tn)− C̃ (t1, t2, . . . , tk−1, ak, tk+1, . . . , tn). In
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the case of the mixture copula, we can expand the volume of the n-box [a, b] as follows

VC̃([a, b]) =
∑

sgn(c)C̃ (c) =
m∑
i=1

∑
wisgn(c)Ci (c) =

m∑
i=1

∑
wiVCi

([a, b])

hence we see that since each component Ci (u1, u2, . . . , un) is a member of the set of Archimedean3103

copula distributions An, therefore for each component we have that VCi
([a, b]) ≥ 0 for all i ∈3104

{1, 2, . . . ,m}.3105

�3106
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